Navigation Links
Optical nanoantennas enable efficient multipurpose particle manipulation
Date:1/12/2012

University of Illinois researchers have shown that by tuning the properties of laser light illuminating arrays of metal nanoantennas, these nano-scale structures allow for dexterous optical tweezing as well as size-sorting of particles.

"Nanoantennas are extremely popular right now because they are really good at concentrating optical fields in small areas," explained Kimani Toussaint, Jr., an assistant professor of mechanical science and engineering at the University of Illinois at Urbana-Champaign. "In this work, we demonstrate for the first time the use of arrays of gold Bowtie Nanoantenna Arrays (BNAs) for multipurpose optical trapping and manipulation of submicrometer- to micrometer-sized objects. We think that this could be a fruitful area to pursue, particularly because of the growing interest in lab-on-a-chip devices."

According to the researchers, the excellent field enhancement and confinement properties of BNAs enable highly efficient, optical tweezers which permit high-speed manipulation of submicrometer to micrometer-sized objects in aqueous environments using remarkably low-input power densities. These characteristics could be useful for optofluidic applications (e.g., lab-on-a-chip devices), manipulating biological matter with reduced specimen photo damage, formation of optical matter, and basic physics studies of colloidal dynamics.

"In contrast to other plasmonic tweezers, we find that BNAs permit particle trapping, manipulation and sorting utilizing only the optical parameter space, namely, low input power densities, wavelength and polarization," said Brian Roxworthy, a graduate student in Toussaint's research group and first author on the paper, "Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting," which appears in the journal Nano Letters.

Using empirically obtained "optical trapping phase diagrams" to achieve the desired trapping response, the researchers demonstrated several types of particle manipulation, including single-beam optical tweezing of single particles over the entire nanoantenna area, single-beam optical tweezing of 2D hexagonal packed particles over the entire nanoantenna area, and optical sorting of particles by size; stacking of submicron to micron-sized particles in 3D.

According to Toussaint, this is the first demonstration of a range of particle manipulation behavior for a given nanoantenna array.

"We actually excite our nanoantennas off resonance, which to our knowledge is a first, and at the right input optical power, we take advantage of thermal effects combined with optical forces to enable tweezing of tens of particles at a time," Toussaint explained. "We show that very low power densities are required to achieve the aforementioned behavior. For example, we were able to carry out experiments using a standard laser pointer."

In addition to Toussaint, the lead investigator for the project, co-investigators include Gang Logan Liu, an assistant professor of electrical and computer engineering at Illinois, and former Illinois faculty member Nicholas Fang, who is now at the Massachusetts Institute of Technology.


'/>"/>

Contact: Kimani C. Toussaint, Jr.
ktoussai@illinois.edu
217-244-4088
University of Illinois College of Engineering
Source:Eurekalert  

Related biology news :

1. Breakthrough optical technology to assess colon cancer risk, accuracy
2. Femtomolar optical tweezers may enable sensitive blood tests
3. Strained quantum dots show new optical properties
4. Frost & Sullivan Recognizes MIRTEC With the 2009 Award for Automated Optical Inspection Product Innovation of the Year
5. Optical Legos: Building nanoshell structures
6. Applied physicists create building blocks for a new class of optical circuits
7. Optical imaging technique for angioplasty
8. Optical technique reveals unnexpected complexity in mammalian olfactory coding
9. Optical water quality assessment
10. Tying the knot with computer-generated holograms: Winding optical path moves matter
11. Optical microscope without lenses produces high-resolution 3-D images on a chip
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Optical nanoantennas enable efficient multipurpose particle manipulation
(Date:6/14/2017)... IBM ) is introducing several innovative partner startups at VivaTech ... startups and global businesses, taking place in Paris ... will showcase the solutions they have built with IBM Watson ... France is one of the most dynamic ... in the number of startups created between 2012 and 2015*, ...
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ... of online age and identity verification solutions, announced today ... Identity Conference 2017, May 15 thru May 17, 2017, ... Building and International Trade Center. Identity ... globe and in today,s quickly evolving digital world, defining ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... They call it the “hairy ... a depiction of a system of linkages and connections so complex and dense ... of computer science at Worcester Polytechnic Institute (WPI) and director of the university’s ...
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and recently formed ... entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The ... gene editing across all applications. , Under the terms of the agreement, Pioneer ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
Breaking Biology Technology: