Navigation Links
Optical nano-tweezers take over the control of nano-objects
Date:3/2/2014

As science and technology go nano, scientists search for new tools to manipulate, observe and modify the "building blocks" of matter at the nanometer scale. With this in mind, the recent publication in Nature Nanotechnology in which ICFO researchers demonstrate for the first time the ability to use near-field optical tweezers to trap a nano-size object and manipulate it in the 3 dimensions of space, is an exciting achievement. Romain Quidant, ICREA Professor and leader at ICFO of the Plasmon Nano-Optics research group comments that "this technique could revolutionize the field of nanoscience since, for the first time, we have shown that it is possible to trap, 3D manipulate and release a single nano-object without exerting any mechanical contact or other invasive action".

Imagine an elephant trying to grab an object the size of a needle with its gigantic hoof? Clearly this would be a tremendous if not impossible challenge because of the elephant's enormous size in comparison to that of the needle. Now imagine that our needle is a single molecule or tiny object about the size of a few nanometers and we, with our conventional tools, need to trap it and manipulate it in in order to, for example, understand its implication in the development of a disease. We have the same problem, first because a conventional optical microscope is not capable of visualizing a single molecule and second, because the physical limitations of our conventional tweezers are simply not capable of grasping or manipulating such small objects.

Invented in Bell Labs in the 80's, the original optical trapping demonstrated great capability to trap and manipulate small objects of micrometer size dimensions using laser light. By shining a laser light through a lens, it is possible to focus light in a tiny spot, creating an attractive force due to the gradient of the light intensity of the laser and thus attracting an object/specimen and maintaining it in the spot/focus.

While Optical tweezers have changed forever the fields of both biology and quantum optics, the technique has considerable limitations, one of which being its inability to directly trap objects smaller than a few hundreds of nanometers. This drawback prompted the pursuit of new approaches of nano-tweezers based on plasmonics, capable of trapping nano-scale objects such as proteins or nanoparticles without overheating and damaging the specimen. A few years ago, ICFO researchers demonstrated that, by focusing light on a very small gold nano-structure lying on a glass surface which acts as a nano-lens, one can trap a specimen at the vicinity of the metal where the light is concentrated. This proof of concept was limited to demonstrate the mechanism but did not enable any 3D manipulation needed for practical applications.

Now researchers at ICFO have taken this a crucial step further by implementing the concept of plasmonic nano-tweezers at the extremity of a mobile optical fiber, nano-engineered with a bowtie-like gold aperture. Using this approach, they have demonstrated trapping and 3D displacement of specimens as small as a few tens of nanometers using an extremely small, non-invasive laser intensity. Central to the great potential of this technique is that both trapping and monitoring of the trapped specimen can be done through the optical fiber, performing the manipulation of nano-objects in a simple and manageable way outside of the physics research lab.

This technique opens a plethora of new research directions requiring non-invasive manipulation of objects at the single molecule/virus level. It is potentially attractive in the field of medicine as a tool to further understand the biological mechanisms behind the development of diseases. Likewise, it holds promise in the context of nanotechnologies to assemble future miniature devices, among other exciting potential applications.


'/>"/>
Contact: Alina Hirschmann
alina.hirschmann@icfo.es
34-935-542-246
ICFO-The Institute of Photonic Sciences
Source:Eurekalert  

Related biology news :

1. Pollen influences optical properties of the atmosphere
2. Green photon beams more agile than optical tweezers
3. Psychemedics & TruTouch Announce US Sales/Marketing Distribution Agreement For TruTouch Technologies Rapid Optical Alcohol Detection & Biometric Test
4. New optical tweezers trap specimens just a few nanometers across
5. Optical boomerangs, ultralight fractal materials, and more
6. Optical waveguide connects semiconductor chips
7. Characterization of stink bug saliva proteins opens door to controlling pests
8. Tiger lily heights controlled with flurprimidol preplant bulb soaks
9. Researchers identify new way to control stone fruit disease
10. Nanomotors are controlled, for the first time, inside living cells
11. Electronically controlled drugs could minimize side effects
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Optical nano-tweezers take over the control of nano-objects
(Date:3/29/2017)... -- higi, the health IT company that operates the largest ... , today announced a Series B investment from BlueCross ... new investment and acquisition accelerates higi,s strategy to create ... health activities through the collection and workflow integration of ... and secures data today on behalf of over 36 ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
Breaking Biology News(10 mins):
(Date:9/19/2017)... ... September 19, 2017 , ... Band-LOK, LLC, ... announced today that two new patents have been allowed by the USPTO on ... Band-LOK, said, “We continue to explore additional clinically-relevant designs for both the implants ...
(Date:9/17/2017)... ... September 17, 2017 , ... GeneOne Life ... of Food and Drug Safety (KMFDS) for an Investigational New Drug application for ... Respiratory Syndrome coronavirus (MERS-CoV). The study in Korea represents the second clinical trial ...
(Date:9/14/2017)... ... September 14, 2017 , ... Boston Strategic Partners, ... with Health Economics and Outcomes Research (HEOR) and ‘big data’ to provide in-depth ... US healthcare spending exceeded $3.0 trillion with nearly 1/3 spent on hospitalizations. BSP ...
(Date:9/13/2017)... ... 2017 , ... AMRI, a global contract research, development and ... quality of life for more than 25 years, today announced that John Iannone, ... International Standards Organization/Technical Committee 194: Biological and Clinical Evaluation of Medical Devices ...
Breaking Biology Technology: