Navigation Links
One species' entire genome discovered inside another's

Scientists at the University of Rochester and the J. Craig Venter Institute have discovered a copy of the entire genome of a bacterial parasite residing inside the genome of its host species.

The finding, reported in todays Science, suggests that lateral gene transferthe movement of genes between unrelated speciesmay happen much more frequently between bacteria and multicellular organisms than scientists previously believed, posing dramatic implications for evolution.

Such large-scale heritable gene transfers may allow species to acquire new genes and functions extremely quickly, says Jack Werren, a principle investigator of the study.

The results also have serious repercussions for genome-sequencing projects. Bacterial DNA is routinely discarded when scientists are assembling invertebrate genomes, yet these genes may very well be part of the organisms genome, and might even be responsible for functioning traits.

This study establishes the widespread occurrence and high frequency of a process that we would have dismissed as science fiction until just a few years ago, says W. Ford Doolittle, Canada Research Chair in Comparative Microbial Genomics at Dalhousie University, who is not connected to the study. This is stunning evidence for increased frequency of gene transfer.

It didnt seem possible at first, says Werren, professor of biology at the University of Rochester and a world-leading authority on the parasite, called Wolbachia. This parasite has implanted itself inside the cells of 70 percent of the worlds invertebrates, coevolving with them. And now, weve found at least one species where the parasites entire or nearly entire genome has been absorbed and integrated into the hosts. The hosts genes actually hold the coding information for a completely separate species.

Wolbachia may be the most prolific parasite in the worlda pandemic, as Werren calls it. The bacterium invades a member of a species, most often an insect, and eventually makes its way into the hosts eggs or sperm. Once there, the Wolbachia is ensured passage to the next generation of its host, and any genetic exchanges between it and the host also are much more likely to be passed on.

Since Wolbachia typically live within the reproductive organs of their hosts, Werren reasoned that gene exchanges between the two would frequently pass on to subsequent generations. Based on this and an earlier discovery of a Wolbachia gene in a beetle by the Fukatsu team at the University of Tokyo, Japan, the researchers in Werrens lab and collaborators at J. Craig Venter Institute (JCVI) decided to systematically screen invertebrates. Julie Dunning-Hotopp at JCVI found evidence that some of the Wolbachia genes seemed to be fused to the genes of the fruitfly, Drosophila ananassae, as if they were part of the same genome.

Michael Clark, a research associate at Rochester then brought a colony of ananassae into Werrens lab to look into the mystery. To isolate the flys genome from the parasites, Clark fed the flies a simple antibiotic, killing the Wolbachia. To confirm the ananassae flies were indeed cured of the wolbachia, Clark tested a few samples of DNA for the presence of several Wolbachia genes.

To his dismay, he found them.

For several months, I thought I was just failing, says Clark. I kept administering antibiotics, but every single Wolbachia gene I tested for was still there. I started thinking maybe the strain had grown antibiotic resistance. After months of this I finally went back and looked at the tissue again, and there was no Wolbachia there at all.

Clark had cured the fly of the parasite, but a copy of the parasites genome was still present in the flys genome. Clark was able to see that Wolbachia genes were present on the second chromosome of the insect.

Clark confirmed that the Wolbachia genes are inherited like normal insect genes in the chromosomes, and Dunning-Hotopp showed that some of the genes are transcribed in uninfected flies, meaning that copies of the gene sequence are made in cells that could be used to make Wolbachia proteins.

Werren doesnt believe that the Wolbachia intentionally insert their genes into the hosts. Rather, it is a consequence of cells routinely repairing their damaged DNA. As cells go about their regular business, they can accidentally absorb bits of DNA into their nuclei, often sewing those foreign genes into their own DNA. But integrating an entire genome was definitely an unexpected find.

Werren and Clark are now looking further into the huge insert found in the fruitfly, and whether it is providing a benefit. The chance that a chunk of DNA of this magnitude is totally neutral, I think, is pretty small, so the implication is that it has imparted of some selective advantage to the host, says Werren. The question is, are these foreign genes providing new functions for the host" This is something we need to figure out.

Evolutionary biologists will certainly take note of this discovery, but scientists conducting genome-sequencing projects around the world also may have to readjust their thinking.

Before this study, geneticists knew of examples where genes from a parasite had crossed into the host, but such an event was considered a rare anomaly except in very simple organisms. Bacterial DNA is very conspicuous in its structure, so if scientists sequencing a nematode genome, for example, come across bacterial DNA, they would likely discard it, reasonably assuming that it was merely contaminationperhaps a bit of bacteria in the gut of the animal, or on its skin.

But those genes may not be contamination. They may very well be in the hosts own genome. This is exactly what happened with the original sequencing of the genome of the anannassae fruitflythe huge Wolbachia insert was discarded from the final assembly, despite the fact that it is part of the flys genome.

In the early days of the Human Genome Project, some studies appeared to show bacterial DNA residing in our own genome, but those were shown indeed to be caused by contamination. Wolbachia is not known to infect any vertebrates such as humans.

Such transfers have happened before in the distant past notes Werren. In our very own cells and those of nearly all plants and animals are mitochondria, special structures responsible for generating most of our cells supply of chemical energy. These were once bacteria that lived inside cells, much like Wolbachia does today. Mitochondria still retain their own, albeit tiny, DNA, and most of the genes moved into the nucleus in the very distant past. Like wolbachia, they have passively exchanged DNA with their host cells. Its possible wolbachia may follow in the path of mitochondria, eventually becoming a necessary and useful part of a cell.

In a way, wolbachia could be the next mitochondria, says Werren. A hundred million years from now, everyone may have a wolbachia organelle.

Well, not us, he laughs. Well be long gone, but wolbachia will still be around.


Contact: Jonathan Sherwood
University of Rochester

Related biology news :

1. New species from old data
2. New Clues Add 40,000 Years to Age of Human Species
3. Ants Genetic Engineering Leads To Species Interdependency
4. Same mutation aided evolution in many fish species, Stanford study finds
5. Fibril Shape Is The Basis Of Prion Strains And Cross-species Prion Infection
6. Reservoirs may accelerate the spread of invasive aquatic species, researchers say
7. Small species back-up giant marsupial climate change extinction claim
8. Aggressive aquatic species invading Great Lakes
9. A New Species of Monkey is Discovered in Tanzania: The First in Africa for More Than 20 Years
10. Bush, Cheney and Rumsfeld are now species of slime-mold beetles -- but strictly in homage
11. Internet viruses help ecologists control invasive species
Post Your Comments:
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
(Date:11/12/2015)... Nov. 12, 2015  Arxspan has entered into ... and Harvard for use of its ArxLab cloud-based ... tools. The partnership will support the institute,s efforts ... chemical research information internally and with external collaborators. ... for managing the Institute,s electronic laboratory notebook, compound ...
Breaking Biology News(10 mins):
(Date:11/26/2015)... , England , November 26, 2015 /PRNewswire/ ... Medical, an innovative medical device company specializing in imaging technologies, ... from the European Commission as part of the Horizon 2020 ... company to carry out a large-scale clinical trial in breast ...      (Logo: , --> ...
(Date:11/25/2015)...  PharmAthene, Inc. (NYSE MKT: PIP) announced  today that ... plan (Rights Plan) in an effort to preserve the ... Section 382 of the Internal Revenue Code (Code). ... of its NOLs could be substantially limited if the ... 382 of the Code. In general, an ownership change ...
(Date:11/25/2015)... -- Studies reveal the differences in species ... the way for more effective treatment for one of the ... --> --> Gum disease ... cats, yet relatively little was understood about the bacteria associated ... conducted by researchers from the WALTHAM Centre for Pet Nutrition ...
(Date:11/25/2015)... SAN DIEGO , Nov. 25, 2015  Neurocrine ... Kevin Gorman , President and CEO of Neurocrine ... Jaffray Healthcare Conference in New York ... encouraged to visit the website approximately 5 minutes prior ... software.  A replay of the presentation will be available ...
Breaking Biology Technology: