Navigation Links
Old developmental pathways spawn revolutionary evolutionary changes

TEMPE, Ariz. When the larvae of the primitive social insect Polistes metricus, a paper wasp, slips into the quiet pupal stage, she doesnt know if shell arise a worker or gyne (future queen) unless she consults with Arizona State Universitys social insect researcher Gro Amdam.

Amdams group is shedding new light on the development of colonial insects from solitary ancestors through study of a primitive social order of wasps. In a paper highlighted on the cover and published Aug. 28 in the Proceedings of the National Academy of Sciences (PNAS), ASUs Amdam and Florian Wolschin teamed up with Kari Norberg, from Amdams laboratory at the Norwegian University of Life Sciences, and James Hunt and others from the University of Missouri. They reveal that the Polistes larvae that can become future queens show signs of developmental diapause, a period of overt quiescence and a life history trait of many insect orders.

How can the larval environment determine future royal stature" The concept of environmental cues, things like weather, shorter day length, or food availability, determining destiny seems distinctly foreign in humans. However, Amdam, an associate professor in ASUs School of Life Sciences, has pioneered an understanding of how developmental programs underlying diapause and reproduction can be adopted in primitively social settings to result in the complex social behaviors and castes found in advanced insect societies.

Because the biology and physiology of the Polistes wasp is more transparent, instead of highly derived as is often the case of highly social insects, such as honey bees, we can more easily backtrack, follow the footprints of evolution and uncover the pathways that castes originally evolved from, says Amdam.

Many species of highly social insects have two distinct female castes, workers and queens, with traits set in larval life. However, Amdam points out that the primitive social Polistes wasp was originally believed to lack developmental castes entirely, and to be more like its solitary ancestors. Individual females were thought to simply choose to become workers or queens as adults. However, previous work by Hunt and Amdam, published in Science Magazine in 2005, suggested otherwise, hypothesizing that a bias toward queen-ness might occur earlier in life than previously believed, and be tied to an old life history trait, diapause, found in both solitary and social insects.

Hard evidence was provided by the discovery by Hunt, Norberg, Wolschin, Amdam and co-workers of differing hexamerin storage protein levels in Polistes larvae and pupae destined to become workers or gynes. In combination with a prolonged developmental time in gynes, this finding indicates that differential provisioning of the larvae, prior to pupation, serves to promote a caste bias in which a higher level of nourishment results in primarily gyne-destined female wasps. According to Amdam, the developmental program of diapause, that also typifies solitary insects without castes, was adopted by evolution to produce Polistes females that look the same but differ in their potential to attain two distinct social roles. This adoption, the PNAS paper poses, provides the foundation for a major developmental switch: the divergence of workers and potentially reproductive gyne castes in some social hymenoptera.

The significance of their research in Polistes is two fold, according to the authors, it challenges the view that workers and gynes represent behavior options equally available to every female offspring, and it exemplifies how social insect castes can evolve from casteless lineages.

Amdam and her colleagues believe this research brings scientists one step closer to understanding how developmental programs in solitary insects can be remodeled to yield complex, social orders marked by castes and task specialization.

This isnt the first system in which Amdam has revealed how ancestral programs have been co-opted to promote the evolution of castes. Amdams group established for the first time how genetic pathways tied to reproductive and molecular signaling cascades that exist in solitary species may have been utilized to yield reproductive queens, and non-reproductive sisters, workers, in the social order of honey bees. In work published in the journal Public Library of Science One (PLoS One) in 2007, the researchers showed that a key regulator for caste fate was the ancestral protein kinase TOR (target of rapamycin), which had become the transducer of the signal determining if a honey bee larva grows to be worker or queen.

The fact that workers and queens can emerge from ancestral pathways in both complex and more primitive social insects helps us understand what evolution builds from when it produces seemingly radical new phenotypes, Amdam says.

Amdams innovative approaches with the use of social insect models led to her selection in June 2007 as a Biomedical Scholar by The Pew Charitable Trusts, and Outstanding Young Researcher by the Research Council of Norway. The resulting $1.8 million in awards will fund her laboratories in ASUs College of Liberal Arts and Sciences and the University of Life Science in Norway, and could potentially lead to new insights into human traits, such as aging, that have likely been molded by social evolution.


Contact: Margaret Coulombe
Arizona State University

Related biology news :

1. Gene keeps neural cells on correct developmental path
2. Agilent Technologies introduces advanced zebrafish, mouse microarrays for stem cell and developmental biology research
3. Stem cells grown in lab mirror normal developmental steps
4. Hormones and growth: The control of body size and developmental growth rate in fruit flies
5. Study ties new cell-death mechanism to developmental and degenerative brain disorders
6. Scientists identify genetic pathways essential to RNA interference
7. Opposing fat metabolism pathways triggered by a single gene
8. Scientists identify genetic pathways essential to RNA interference
9. Ariadne Genomics Announces the Release of PathwayStudio?Central, Client-Server Software for Biological Pathway Analysis
10. New pathways for autoimmune treatment identified
11. New study reveals signaling pathways required for expansion of pancreas stem cells
Post Your Comments:
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces ... joined its Board of Directors. --> ... after recently retiring from the partnership at TPG Capital, ... companies with over $140 Billion in revenue.  He founded ... across all the TPG companies, from 1997 to 2013.  ...
(Date:11/12/2015)... --  Growing need for low-cost, easy to use, ... the way for use of biochemical sensors for ... clinical, agricultural, environmental, food and defense applications. Presently, ... applications, however, their adoption is increasing in agricultural, ... on improving product quality and growing need to ...
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , ... November 24, 2015 , ... This fall, global ... competitive events in five states to develop and pitch their BIG ideas to improve ... each state are competing for votes to win the title of SAP's Teen Innovator, ...
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its ... at 11:00 a.m. Israel time, at the law ... Allon Street, 36 th Floor, Tel Aviv, Israel ... and Izhak Tamir to the Board of Directors; ... directors; , approval of an amendment to certain terms of options ...
(Date:11/24/2015)... Nov. 24, 2015  Twist Bioscience, a company ... Leproust, Ph.D., Twist Bioscience chief executive officer, will ... on December 1, 2015 at 3:10 p.m. Eastern ... City. --> --> ... Twist Bioscience is on Twitter. Sign up to ...
Breaking Biology Technology: