Navigation Links
Ocean's most oxygen-deprived zones to shrink under climate change
Date:8/7/2014

As the complex story of climate change unfolds, many of the endings are grim. But there are exceptions. Predictions that the lowest-oxygen environments in the ocean would get worse may not come to pass. Instead, University of Washington research shows climate change, as it weakens the trade winds, could shrink the size of these extreme low-oxygen waters.

"The tropics should actually get better oxygenated as the climate warms up," said Curtis Deutsch, a UW associate professor of oceanography. He is lead author of the study published Aug. 8 in Science.

Warmer water contains less gas, so climate change is expected to reduce oxygen levels worldwide. Observations show this is already taking place in many places. Declines during the past 20 years in the tropical low-oxygen zones, the lowest-oxygen waters on the planet, had led to a 2008 study proposing that these zones would also get worse over time.

Tropical regions are usually associated with an abundance of life, but they have some of the most inhospitable places for ocean dwellers. The oxygen minimum zones off Mexico and Peru have oxygen levels already too low to support most animals (so, unlike in other low-oxygen zones, here there's no risk of killing fish).

But when those levels drop even further, a particular group of bacteria, which can use nitrogen instead of oxygen as a source of energy, thrive. Nitrogen is an essential and very scarce nutrient for marine plants. When oxygen levels get low enough for that particular group of bacteria to take over, significant amounts of the ocean's fertilizer get deep-sixed to the bottom of the tropical ocean.

The new paper shows that water flowing into the tropics is indeed likely to get lower in oxygen, decreasing the initial oxygen supply. But demand will also shift under climate change. Specifically, as the trade winds weaken, the whole sequence of events that feeds this bacterial food chain will slow down, and the low-oxygen zone will shrink.

"If we want to understand how biological and chemical aspects of the ocean will change in the future, we really have to pay a lot of attention to what happens with the winds," Deutsch said. "The winds can lead to conclusions that are exactly the opposite of what you'd expect."

Trade winds from the west cause deep water to percolate up along western coasts, bringing nutrients up from the deep sea. These nutrients feed marine plants, which feed marine animals, which decompose to feed bacteria that use up the remaining oxygen. As trade winds weaken, less nutrient-rich water percolates up from the deep. Fewer plants grow at the surface. Finally, fewer oxygen-gobbling bacteria can survive.

Deutsch is a climate modeler who studies tropical ocean circulation. He learned of sediment cores, collected off Mexico by co-authors William Berelson at the University of Southern California and Alexander van Geen at Columbia University, that showed a puzzling longer-term trend. The authors worked together to interpret the samples. Results show that for most of the time since 1850 the population of these nitrogen-eating bacteria has been going down, coincident with warming oceans and weakening trade winds. This implies that the local oxygen levels, for which few direct measurements exist, have been rising.

"I find it an interesting question for understanding the way the ocean functions on climatic or geologic timescales," Deutsch said.

Most climate models predict that trade winds will continue to weaken in the future, shrinking the oxygen-minimum zones in the Pacific Ocean off the coasts of Mexico, Chile and Peru, and in the Indian Ocean off western Australia.

Decreasing oxygen in the wider ocean is still a major concern, Deutsch said, as are overfishing, ocean acidification and warming water temperatures. "This study shows that what happens to the winds, which is sometimes overlooked, is really important for predicting how the oceans will respond to climate change," Deutsch said.


'/>"/>

Contact: Hannah Hickey
hickeyh@uw.edu
206-543-2580
University of Washington
Source:Eurekalert

Related biology news :

1. Calcification in changing oceans explored in special issue of The Biological Bulletin
2. SAR11, oceans most abundant organism, has ability to create methane
3. Can coral save our oceans?
4. Warming climates intensify greenhouse gas given out by oceans
5. Metabolism may have started in our early oceans before the origin of life
6. Fish living near the equator will not thrive in the warmer oceans of the future
7. New studies needed to predict how marine organisms may adapt to the futures acidic oceans
8. Scientists reveal why life got big in the Earths early oceans
9. UCLA report urges new global policy effort to tackle crisis of plastic litter in oceans
10. Coral chemicals protect against warming oceans
11. Glimpse into the future of acidic oceans shows ecosystems transformed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
(Date:4/5/2017)... YORK , April 5, 2017 Today ... is announcing that the server component of the HYPR ... known for providing the end-to-end security architecture that empowers ... HYPR has already secured over 15 million ... makers including manufacturers of connected home product suites and ...
(Date:3/30/2017)... , March 30, 2017 The research ... system for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D ... a new realm of speed and accuracy for use in identification, ... an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:6/26/2017)... ... , ... The Workgroup for Electronic Data Interchange (WEDI) , the nation’s ... information exchange and a statutory advisor to the U.S. Department of Health and Human ... the National Coordinator for Health Information Technology, will deliver the keynote at its 2017 ...
(Date:6/23/2017)... ... June 23, 2017 , ... RURO, Inc., a leading LIMS, ... its rapidly growing Laboratory Information System. , LimitLIS® version 3 is includes new ... provide more customization options. Each of these has been “under the microscope” in ...
(Date:6/23/2017)... (PRWEB) , ... June 23, 2017 , ... ... for model aircraft flying hobbyists, and the University Aviation Association (UAA), the unifying ... students. The UAS4STEM Collegiate Challenge will encourage teamwork, competition, and success through a ...
(Date:6/22/2017)... ... ... Building on the success of the inaugural RAADfest last year, RAADfest 2017 ... in radical life extension. RAADfest combines cutting edge science presented for a lay audience, ... making it the largest most comprehensive and inclusive super longevity event in the world. ...
Breaking Biology Technology: