Navigation Links
Oceanographers develop method for measuring the pace of life in deep sediments
Date:3/27/2012

NARRAGANSETT, R.I. -- Life deep in the seabed proceeds very slowly. But the slow-growing bacteria living many meters beneath the seafloor play an important role in the global storage of organic carbon and have a long-term effect on climate. A team of scientists from Aarhus University (Denmark) and the University of Rhode Island have developed a new method for measuring this slow life deep down in the seabed.

Their findings were published last week in the journal Nature.

According to URI Oceanography Professor Arthur Spivack, the relative abundance of amino acids that are mirror images of each other in subseafloor sediment reflects the activity of microorganisms. The research team used this signature to calculate how active microorganisms are in the deepest layers of the seabed.

The deep seafloor samples were collected during an international drilling program led by the URI and Danish researchers. Advanced laboratory techniques were used to obtain the data. The researchers found that the metabolism of organic carbon takes place at a much slower rate in the deep seabed compared with all other known ecosystems.

"This study goes far beyond previous studies by showing that microbes in subseafloor sediment replace their biomass thousands of times more slowly than microbes in the surface world," said URI Oceanography Professor Steven D'Hondt. The mean generation time of bacterial cells in the sediment is correspondingly long 1,000 to 3,000 years. In comparison, the bacteria that have previously been studied in the laboratory or in nature typically reproduce in a number of hours.

"Seventy percent of our planet is covered by ocean, which means that seventy percent of the planet is made up of seabed consisting of sediment that stores old organic matter," said Aarhus University Associate Professor Bente Lomstein. "In some places the deposits are more than one hundred meters thick. Several percent of the total living biomass on Earth is actually found in the mud in the seabed. The bacteria in the seabed convert the carbon of organic matter to CO2, and if we add it all up, the metabolism down there plays a crucial role in the global carbon cycle, even if it happens very slowly."

One reason for the slow pace of life in the seabed is the challenging environment the bacteria lives in.

"Extremely high pressure, total darkness and very little nutrition those are the conditions under which microorganisms live in the seabed," added Alice Thoft Langerhuus, another Aarhus University researcher. "At the bottom of the deep ocean, the pressure reaches several hundred atmospheres."

The research team has also showed how many of the bacteria survive under such extreme conditions. The scientists succeeded for the first time in demonstrating that there are just as many dormant cells as there are active ones. The dormant bacteria have formed endospores, which have a solid shell to protect themselves against the harsh environment.

The researchers said that their new method for calculating the pace of life in the seabed can also be used to measure the pace of life in other ancient environments with extremely low biological activity, like permafrost soils.


'/>"/>
Contact: Todd McLeish
tmcleish@uri.edu
401-874-7892
University of Rhode Island
Source:Eurekalert

Related biology news :

1. Oceanographers call for more ocean observing in Antarctica
2. Stantum Offering Demo, Evaluation & Development Board Based on Its Patented Resistive Multi-Touch Technology
3. Researchers develop new self-training gene prediction program for fungi
4. Childrens National researchers develop novel anti-tumor vaccine
5. National Science Foundation grants Clemson professors award to develop nanoprobes
6. NIAID announces 25 new awards to develop radiation countermeasures
7. Human Microbiome Project awards funds for technology development, data analysis and ethical research
8. Digital zebrafish embryo provides the first complete developmental blueprint of a vertebrate
9. Scientists trace molecular origin of proportional development
10. Repair in the developing heart
11. European researchers harness unique properties of boron to develop new drugs and diagnostics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created 4Sight Medical ... to the healthcare market. The company's primary focus is on new product introductions, ... strategies that are necessary to help companies efficiently bring their products to market. ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: