Navigation Links
Ocean acidification from CO2 emissions will cause physiological impairment to jumbo squid
Date:12/15/2008

KINGSTON, R.I. December 15, 2008 The elevated carbon dioxide levels expected to be found in the world's oceans by 2100 will likely lead to physiological impairments of jumbo (or Humboldt) squid, according to research by two University of Rhode Island scientists.

The results of a study by Brad Seibel, URI assistant professor of biological sciences, and Rui Rosa, a former URI post-doctoral student now on the faculty at the University of Lisbon, Portugal, is reported in this week's issue of the Proceedings of the National Academy of Sciences.

The researchers subjected the squids (Dosidicus gigas) to elevated concentrations of CO2 equivalent to those likely to be found in the oceans in 100 years due to anthropogenic emissions. They found that the squid's routine oxygen consumption rate was reduced under these conditions, and their activity levels declined, presumably enough to have an effect on their feeding behavior.

Jumbo squid are an important predator in the eastern Pacific Ocean, and they are a large component of the diet of marine mammals, seabirds and fish.

According to Seibel, jumbo squid migrate between warm surface waters at night where CO2 levels are increasing and deeper waters during the daytime where oxygen levels are extremely low.

"Squids suppress their metabolism during their daytime foray into hypoxia, but they recover in well-oxygenated surface waters at night," he said. "If this low oxygen layer expands into shallower waters, the squids will be forced to retreat to even shallower depths to recover. However, warming temperatures and increasing CO2 levels may prevent this. The band of habitable depths during the night may become too narrow."

Carbon dioxide enters the ocean via passive diffusion from the atmosphere in a process called ocean acidification. This phenomenon has received considerable attention in recent years for its effects on calcifying organisms, such as corals and shelled mollusks, but the study by Seibel and Rosa is one of the first to show a direct physiological effect in a non-calcifying species.

The scientists speculate that the squids may eventually migrate to more northern climes where lower temperatures would reduce oxygen demand and relieve them from CO2 and oxygen stress. While it is possible, they say, that the squids could adjust their physiology over time to accommodate the changing environment, jumbo squids have among the highest oxygen demands of any animal on the planet and are thus fairly constrained in how they can respond.

"We believe it is the blood that is sensitive to high CO2 and low pH," Seibel said. "This sensitivity allows the squids to off-load oxygen more effectively to muscle tissues, but would prevent the squid from acquiring oxygen across the gills from seawater that is high in CO2."

While many other squid and octopus species have oxygen transport systems that are equally sensitive to pH, few have such high oxygen demand coupled with large body size and low environmental oxygen. Therefore the scientists believe that their study results should not be extrapolated to other marine animals.


'/>"/>

Contact: Todd McLeish
tmcleish@uri.edu
401-874-7892
University of Rhode Island
Source:Eurekalert

Related biology news :

1. Ocean growing more acidic faster than once thought
2. Europe cores in EUROCORES: Ocean drilling in EuroMARC
3. Uncovering secrets of life in the ocean
4. Mysterious microbe plays important role in ocean ecology
5. Mysterious microbe may play important role in ocean ecology
6. Ecologists use oceanographic data to predict future climate change
7. Coral reefs found growing in cold, deep ocean
8. NOAA and NSF commission national study of ocean acidification
9. Diatom genome helps explain success in trapping excess carbon in oceans
10. Ocean floor geysers warm flowing sea water
11. Complex ocean behavior studied with artificial upwelling
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/24/2017)... WASHINGTON , April 24, 2017 ... counsel and partner with  Identity Strategy Partners, LLP ... "With or without President Trump,s March 6, ... Foreign Terrorist Entry , refugee vetting can be instilled ... refugee resettlement. (Right now, all refugee applications are ...
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building and cooking events ... announced today. The bold new look is part of a transformation to increase ... a significant growth period. , It will also expand its service offering from its ...
(Date:10/10/2017)... Oct. 10, 2017 SomaGenics announced the receipt ... to develop RealSeq®-SC (Single Cell), expected to be the ... RNAs (including microRNAs) from single cells using NGS methods. ... need to accelerate development of approaches to analyze the ... "New techniques for measuring levels of mRNAs in ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... At its ... Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has ... was a member of the winning team for the 2015 Breakthrough Prize in Fundamental ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 ... of three scientists, Jacques Dubochet, Joachim Frank ... developments in cryo-electron microscopy (cryo-EM) have ... within the structural biology community. The winners worked ... can now routinely produce highly resolved, three-dimensional images ...
Breaking Biology Technology: