Navigation Links
ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production
Date:11/13/2013

OAK RIDGE, Tenn., Nov. 13, 2013 Researchers studying more effective ways to convert woody plant matter into biofuels at the Department of Energy's Oak Ridge National Laboratory have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy.

The research team, which published its results in Green Chemistry, set out to decipher the inner workings of plant cell walls during pretreatment, the most expensive stage of biofuel production. Pretreatment subjects plant material to extremely high temperature and pressure to break apart the protective gel of lignin and hemicellulose that surrounds sugary cellulose fibers.

"While pretreatments are used to make biomass more convertible, no pretreatment is perfect or complete," said ORNL coauthor Brian Davison. "Whereas the pretreatment can improve biomass digestion, it can also make a portion of the biomass more difficult to convert. Our research provides insight into the mechanisms behind this 'two steps forward, one step back' process."

The team's integration of experimental techniques including neutron scattering and X-ray analysis with supercomputer simulations revealed unexpected findings about what happens to water molecules trapped between cellulose fibers.

"As the biomass heats up, the bundle of fibers actually dehydrates -- the water that's in between the fibers gets pushed out," said ORNL's Paul Langan. "This is very counterintuitive because you are boiling something in water but simultaneously dehydrating it. It's a really simple result, but it's something no one expected."

This process of dehydration causes the cellulose fibers to move closer together and become more crystalline, which makes them harder to break down.

In a second part of the study, the researchers analyzed the two polymers called lignin and hemicellulose that bond to form a tangled mesh around the cellulose bundles. According to the team's experimental observations and simulations, the two polymers separate into different phases when heated during pretreatment.

"Lignin is hydrophobic so it repels water, and hemicellulose is hydrophilic, meaning it likes water," Langan said. "Whenever you have a mixture of two polymers in water, one of which is hydrophilic and one hydrophobic, and you heat it up, they separate out into different phases."

Understanding the role of these underlying physical factors -- dehydration and phase separation -- could enable scientists to engineer improved plants and pretreatment processes and ultimately bring down the costs of biofuel production.

"Our insight is that we have to find a balance which avoids cellulose dehydration but allows phase separation," Langan said. "We know now what we have to achieve -- we don't yet know how that could be done, but we've provided clear and specific information to help us get there."


'/>"/>

Contact: Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308
DOE/Oak Ridge National Laboratory
Source:Eurekalert  

Related biology news :

1. Wireless sensors used to study meditations effect on heart health
2. Dont hold the anchovies: Study shows Peruvian fish worth more as food than as feed
3. Grant supports Clemson study of coastal biodiversity
4. Duke wins $15 million renewal to study nanotech safety
5. A longitudinal study of grapheme-color synaesthesia in childhood
6. New study analyzes sharp rise in US drug poisoning deaths by county
7. Understanding ourselves by studying the animal kingdom
8. Low levels of blood calcium in dairy cows may affect cow health and productivity, MU study finds
9. Study shows moms may pass effects of stress to offspring via vaginal bacteria and placenta
10. Sons of cocaine-using fathers may resist addiction to drug, Penn Medicine study suggests
11. UNH, UC Davis launch network to study environmental microbes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production
(Date:4/5/2017)... LONDON , April 4, 2017 KEY ... is anticipated to expand at a CAGR of 25.76% ... neurodegenerative diseases is the primary factor for the growth ... full report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The ... of product, technology, application, and geography. The stem cell ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... , ... October 10, 2017 ... ... cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing ... HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO ... Diego Rotary Club. The event entitled “Stem Cells and Their Regenerative ... attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced ... the NIH to develop RealSeq®-SC (Single Cell), expected to ... profiling small RNAs (including microRNAs) from single cells using ... highlights the need to accelerate development of approaches to ... "New techniques for measuring levels of ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program Committee ... honoring scientists who have made outstanding contributions to analytical chemistry and applied ... the world’s leading conference and exposition for laboratory science, which will be held ...
Breaking Biology Technology: