Navigation Links
ORNL researchers improve soil carbon cycling models
Date:8/16/2012

A new carbon cycling model developed at the U.S. Department of Energy's (DOE) Oak Ridge National Laboratory better accounts for the carbon dioxide-releasing activity of microbes in the ground, improving scientists' understanding of the role soil will play in future climate change.

Predicting climate change depends heavily on the cycling of carbon dioxide, which is found in four main reservoirs: the atmosphere, biosphere, oceans and soil. ORNL's model was designed to replace traditional soil carbon cycling models.

"Soil is a big reservoir of carbon," said co-author Melanie Mayes of ORNL's Environmental Sciences Division. "And most of the soil carbon cycling models in use today are so vastly simplified that they ignore the fact that decomposition is actually performed by microbes."

In a paper published in Ecological Applications, the journal of the Ecological Society of America, ORNL researchers integrated data from scientific literature on carbon degradation in soil to form the Microbial-Enzyme-mediated Decomposition, or MEND, model that improves upon previous models.

"Our MEND model does a better job of representing the mechanisms of soil carbon decomposition than existing models," Mayes said.

ORNL's comprehensive model accounts for how the different forms of carbon in soil, or "pools," react with extracellular enzymes excreted into the soil by microbes, allowing scientists to understand how quickly carbon is moving through soils.

The model simulates the carbon cycle, beginning after a decaying plant or animal releases carbon-rich materials into the soil. The organic material is degraded by enzymatic reactions, releasing dissolved carbon molecules that can be absorbed by microbes for growth or metabolism. These processes ultimately result in the release of carbon dioxide.

ORNL's MEND model is the first model able to track degradation by accounting for most of the relevant processes and by estimating the parameters based on a comprehensive literature review. This model, which is based on the physiological functions of microbes, accounts for how temperature affects the ability of microbes to emit carbon dioxide. Soil can either store or release carbon depending on how rapidly carbon-rich materials in the soil are decomposed.

"What we think will happen is that as temperature goes up, microbial physiology will change, altering their ability to break down carbon chains and release carbon dioxide into the atmosphere," Mayes said. "If our models don't account for this process, then our ability to predict future climate change will be less realistic."

For the next six to eight months, ORNL's team will run laboratory-scale experiments to ensure that the MEND model accurately represents the decomposition of carbon compounds in soils. Eventually, team members hope to incorporate their model into the publicly available supercomputing program called the Community Land Model, a module used in the Community Earth System Model that helps researchers predict future climate change.


'/>"/>
Contact: Jennifer Brouner
brounerjm@ornl.gov
865-241-9515
DOE/Oak Ridge National Laboratory
Source:Eurekalert

Related biology news :

1. Researchers identify key culprit causing muscle atrophy
2. Researchers demonstrate control of devastating cassava virus in Africa
3. Researchers pursue red flag for schizophrenia relapse
4. A new line of defense: Researchers find cattle vaccine works to reduce E. coli O157:H7
5. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
6. Wayne State researchers working to improve genetic analysis, disorder detection
7. Superbird stuns researchers
8. Massachusetts Eye and Ear researchers discover elusive gene that causes a form of blindness from birth
9. Researchers monitor red tides in Chesapeake Bay
10. BUSM researchers find link between childhood abuse and age at menarche
11. Researchers dig through the gene bank to uncover the roots of the evolutionary tree
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... , May 5, 2017 ... just announced a new breakthrough in biometric authentication ... exploits quantum mechanical properties to perform biometric authentication. These ... smart semiconductor material created by Ram Group and ... finance, entertainment, transportation, supply chains and security. Ram ...
(Date:4/18/2017)...  Socionext Inc., a global expert in SoC-based imaging and computing ... M820, which features the company,s hybrid codec technology. A demonstration utilizing ... Inc., will be showcased during the upcoming Medtec Japan at Tokyo ... Las Vegas Convention Center April 24-27. ... Click here for an image ...
(Date:4/13/2017)... 13, 2017 According to a new market research ... Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and ... is expected to grow from USD 14.30 Billion in 2017 to USD ... 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Oct. 10, 2017 International research firm Parks Associates ... speak at the TMA 2017 Annual Meeting , October 11 in ... the residential home security market and how smart safety and security products ... Parks Associates: Smart ... "The residential security market ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings announced ... by which its ProCell stem cell therapy prevents ... ischemia.  The Company, demonstrated that treatment with ProCell ... limbs saved as compared to standard bone marrow ... HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
(Date:10/6/2017)... ... 06, 2017 , ... The HealthTech Venture Network (HTVN) is ... fourth annual Conference where founders, investors, innovative practitioners and collaborators are invited to ... showcasing early stage digital health and med tech companies. , This day-long event ...
Breaking Biology Technology: