Navigation Links
OHSU teams with Intel to decode the root causes of cancer and other complex diseases
Date:4/22/2013

PORTLAND, Ore. Oregon Health & Science University (OHSU) and Intel Corp. are teaming up to develop next-generation computing technologies that advance the field of personalized medicine by dramatically increasing the speed, precision and cost-effectiveness of analyzing a patient's individual genetic profile. Through a multi-year research and engineering collaboration announced today, engineers and scientists from the two institutions will develop hardware, software and workflow solutions for Intel's extreme-scale, high-performance computing solutions. This new level of computational horsepower seeks to make strides in addressing one of the biggest challenges in personalized medicine: how to cope with the unprecedented volume of complex biomedical data it generates.

The collaboration combines Intel's strengths in extreme-scale computing capable of handling billions of complex computations simultaneously with OHSU's innovative four-dimensional approach in imaging and analyzing the molecular-level drivers of cancer and other diseases. OHSU's imaging techniques work like a Google map for cancer by providing a highly detailed view of how cells change over time at the molecular level along with a big-picture analysis of how the cells behave as a system.

The team's approach will be to create information tools that can handle the mind-boggling volumes of data generated in the process doing it more rapidly, more precisely and less expensively than is capable with current technology. The objective is to drive scientific progress in understanding the genetic origins of illness, starting with cancer, at an individual-patient level and ultimately, to make precision medicine a more routine model of patient care.

An integrated OHSU/Intel team is working on a research data center equipped with an Intel supercomputing cluster. Along with top researchers from the OHSU Knight Cancer Institute, the collaboration will include computer scientists, biophysicists, genomicists, bio-informaticists, biologists and other experts. The team's first projects will be focused on genetic profiling of patients' tumors to look for patterns in how the disease progresses and how to relate this information to how the tumor will respond to treatment.

"This collaboration combines Intel's strengths in developing energy-efficient, extreme-scale computing solutions with OHSU's lead in visualizing and understanding complex biological information," said Stephen Pawlowski, Intel Senior Fellow and Chief Technology Officer, Datacenter and Connected Systems Group, Intel Corp. "We look forward to working together with the goal of improving the efficiency of complex disease diagnosis and personalized treatment."

The science inside

Working side by side with cancer as their first disease target, Intel's engineers and OHSU's biomedical experts are looking to develop a way to create a highly detailed circuit diagram of the genome. By comparing an individual patient's circuitry with the map of a healthy genome, scientists can isolate and study the patient's individual genetic abnormalities to determine which, if any, are linked to cancer. It sounds simple, but the computational demands of this work are intense, requiring clusters of supercomputers and customized algorithms geared to decode the bewildering complexity of human genetic variation.

One of the primary computing challenges is the need to analyze enough disease-causing malfunctions in a sufficiently large population of patients to detect statistically valid patterns in cellular circuitry linked to the progression of disease. Better understanding of how this circuitry works has potential to enable medical researchers to develop detection tools that find cancer at earlier and more treatable stages, diagnosis and staging methods that more precisely guide treatment decisions, and new treatments that more effectively shut down the molecular triggers of illness.

"To make a real difference for cancer patients, we need to know more about how the disease functions over time and within the body's multitude of systems. That represents an enormous analytical challenge that is beyond the capability of current technology," said Joe Gray, Ph.D., Associate Director for Translational Research at the OHSU Knight Cancer Institute, the Gordon Moore Endowed Chair of OHSU's Department of Biomedical Engineering, and Director of the OHSU Center for Spatial Systems Biomedicine.

"By combining Intel's computing expertise with what we know about how to analyze genomes and to create images of how cells change over time, we believe we have the capability to develop the right tools to make significant progress in making the promise of personalized cancer medicine a reality for more patients. This is likely to be a decades-long process, but along the way we expect that what we will learn in studying cancer will also provide insights into other complex diseases," Gray said.

Despite the hotly competitive race to launch new DNA sequencing instruments that can do the job faster, it still takes weeks and many thousands of dollars to analyze just a single patient's cancer profile. The first phase of the OHSU/Intel collaboration will focus on developing systems to accomplish that task in a matter of hours at a cost that is feasible for clinical applications. The data will feed the team's more complex work of developing systems capable of analyzing how genomic abnormalities cause changes in the molecular architecture of cells and tissues in individual patients. It is hoped that this knowledge will help accelerate drug development and lead to more precise, clinically actionable diagnostic tests.

Cancer's unique computational challenges

Cancer and other diseases with similar origins in molecular abnormalities present scientists with dual, equally stubborn challenges in biology and computation. Cancer is one of mankind's most complex diseases, with more than 12 million new cases diagnosed worldwide each year. That number will balloon as the world's population ages and individual risk factors multiply.

What makes this health challenge so daunting is that cancer is really a collection of rare diseases. In fact, there are no common cancers. There are only common cancer environments in the body, such as the breast. Genetic abnormalities that cause these tumors manifest differently in each individual and are impacted not only by how mutations interact but the location of the body in which they are occurring. Scientists are also realizing that seemingly innocuous biological structures and proteins in the tumor microenvironment also support the growth of cancer cells, adding still more complexity to the equation.

Even more perplexing, a healthy human body creates millions of mutations. Not all of them in fact, not even most of them are relevant in disease. The scientific challenge is determining, for each individual, which mutations are relevant.

Why Intel and OHSU are coming together

OHSU's genomic analysis and imaging technologies, if combined with adequate computing power, have the potential to illuminate how billions of genetic mutations are interacting in an individual's body over time to create tumors. The promise of Intel's extreme-scale, high-performance computing solutions is the capability to analyze this data at a cost that will eventually allow for clinical applications, and with lower power consumption than alternative technologies.

The collaboration represents a multi-year commitment with many facets, including plans to educate the next generation of scientists and information technology professionals in the all-new field of quantitative bioscience. As advanced technology and life sciences converge in routine health care environments, a new workforce will evolve with training needs that cannot be fully met by current educational programs. Intel will contribute to OHSU's efforts to develop and implement graduate and undergraduate curricula exposing science and technology students to new high-level knowledge at the interface of computation, biology and medicine.


'/>"/>

Contact: Elisa Williams
503-494-8231
Oregon Health & Science University
Source:Eurekalert

Related biology news :

1. Impressive list of research teams for the 2013 HFSP Research Grants
2. US, New Zealand search-and-rescue teams recalled from Antarctic plane crash site
3. Basketball teams offer insights into building strategic networks
4. Thirty teams compete to interpret three families genomes
5. Pollution teams with thunderclouds to warm atmosphere
6. ONR taps research teams to help reduce jet noise
7. Do intellectual property rights on existing technologies hinder subsequent innovation?
8. Hyland Software Partners with Communication Intelligence Corporation (CIC), a Leading Supplier of Electronic Signature Solutions
9. Swarm intelligence
10. Warren Lammert Joins IntelliMedix Board of Advisors
11. Cornell engineers solve a biological mystery and boost artificial intelligence
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita ... miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the subject of ... now. , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... Houston Methodist Willowbrook Hospital has signed ... to serve as their official health care provider. ... will provide sponsorship support, athletic training services, and ... volunteers, athletes and families. "We are ... and to bring Houston Methodist quality services and ...
(Date:6/23/2016)... -- The Biodesign Challenge (BDC), a university competition that asks ... systems and biotechnology, announced its winning teams at the ... York City . The teams, chosen ... MoMA,s Celeste Bartos Theater during the daylong summit. Keynote ... of architecture and design, and Suzanne Lee , ...
Breaking Biology Technology: