Navigation Links
OHSU research produces the world's first primate chimeric offspring
Date:1/5/2012

PORTLAND, Ore. - Newly published research by scientists at Oregon Health & Science University provides significant new information about how early embryonic stem cells develop and take part in formation of the primate species. The research, which took place at OHSU's Oregon National Primate Research Center, has also resulted in the first successful birth of chimeric monkeys -- monkeys developed from stem cells taken from two separate embryos. The research will be published this week in the online edition of the journal Cell and will be published in a future printed copy of the journal.

The research was conducted to gain a better understanding of the differences between natural stem cells residing in early embryos and their cultured counterparts called embryonic stem cells. This study also determined that stem cell functions and abilities are different between primates and rodents.

Here's more information about the early primate stem cells that were studied: The first cell type was totipotent cells cells from the early embryo that have the ability to divide and produce all of the differentiated cells in the placenta and the body of organism. These were compared with pluripotent cells cells derived from the later stage embryo that have only the ability to become the body but not placenta.

In mice, either totipotent or pluripotent cells from two different animals can be combined to transform into an embryo that later becomes a chimeric animal. However, the current research demonstrated that for reasons yet unknown, chimeric animals can only develop from totipotent cells in a higher animal model: the rhesus macaque. OHSU showed this to be the case by successfully producing the world's first primate chimeric offspring, three baby rhesus macaques named Roku, Hex and Chimero.

"This is an important development - not because anyone would develop human chimeras - but because it points out a key distinction between species and between different kind of stem cells that will impact our understanding of stem cells and their future potential in regenerative medicine," explained Shoukhrat Mitalipov, Ph.D., an associate scientist in the Division of Reproductive and Developmental Sciences at ONPRC.

"Stem cell therapies hold great promise for replacing damaged nerve cells in those who have been paralyzed due to a spinal cord injury or for example, in replacing dopamine-producing cells in Parkinson's patients who lose these brain cells resulting in disease. As we move stem cell therapies from the lab to clinics and from the mouse to humans, we need to understand what these cells do and what they can't do and also how cell function can differ in species."


'/>"/>
Contact: Jim Newman
newmanj@ohsu.edu
503-494-8231
Oregon Health & Science University
Source:Eurekalert

Related biology news :

1. New report reviews plan for US Global Change Research Program
2. Todd Hoagland honored by Anatomy Society for excellence in teaching, research & scholarship
3. New research shows how male spiders use eavesdropping to one-up their rivals
4. NHM entomologist co-authors new research on parasitic phorid fly, a new threat to honey bees
5. Scripps Research scientists discover a brain cell malfunction in schizophrenia
6. Frogs use calls to find mates with matching chromosomes, University of Missouri researchers find
7. UT-ORNL research reveals aquatic bacteria more recent move to land
8. Cleveland Clinic researcher discovers genetic cause of thyroid cancer
9. Viagra against heart failure: Researchers at the RUB and from Rochester throw light on the mechanism
10. Researcher contends multiple sclerosis is not a disease of the immune system
11. DOE researchers achieve important genetic breakthroughs to help develop cheaper biofuels
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
(Date:3/23/2017)... Research and Markets has announced the addition of the "Global ... 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market is ... next decade to reach approximately $14.21 billion by 2025. ... all the given segments on global as well as regional levels ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... BioMedGPS announces expanded coverage of ... newest module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and ... synthetic sealants and biologic sealants used in surgical applications. BioMedGPS estimates the market ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 system ... experiments and avoiding the use of exogenous expression plasmids. The simplicity of programming ... systematic gain-of-function studies. , This complement to loss-of-function studies, such as with ...
(Date:10/11/2017)... , Oct. 11, 2017  VMS BioMarketing, a leading provider ... nationwide oncology Clinical Nurse Educator (CNE) network, which will launch ... for communication among health care professionals to enhance the patient ... office staff, and other health care professionals to help women ... cancer. ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
Breaking Biology Technology: