Navigation Links
Novel polymer could improve protein-based drugs
Date:8/19/2009

DURHAM, N.C. A new method for attaching a large protective polymer molecule to a protein appears to improve protein drugs significantly.

Bioengineers at Duke University developed the new approach and demonstrated in an animal model that the newly created protein-polymer combinations, known as conjugates, remained in circulation significantly longer than an unprotected protein.

The scientists say they are encouraged that their findings represent a new strategy to improve the efficacy of protein drugs.

Protein-based drugs are an increasingly important new class of drugs, said Ashutosh Chilkoti, Theo Pilkington Professor of Biomedical Engineering at Duke's Pratt School of Engineering. He cited such examples as insulin for the treatment of diabetes and more exotic "magic bullet" antibodies like herceptin that are used to treat certain cancers.

Unmodified proteins that are injected into the blood are quickly recognized by the body and broken down or cleared by the body's defense system, which limits their effectiveness as drugs. To get around this problem, drug makers have been attaching another molecule, a polymer known as polyethyleneglycol (PEG), to the protein in order to protect it. But this approach has its own drawbacks.

"The current method of combining the two molecules often only works with 10 to 20 percent efficiency, so that a lot of the very expensive starting materials are wasted," said Chilkoti, who had the results of his team's experiments published this week online in the Proceedings of the National Academy of Sciences. "Additionally, the two large molecules are attached by a small chemical link and often these linkages can occur at many different sites on the protein, so the final product is poorly defined."

Chilkoti took a different approach. Instead of combining two large molecules, he grew the polymer out from the protein itself, increasing the efficiency of the protein by more than 70 percent and greatly extending the amount of time it remained active in a living model.

"We also addressed the problem of getting a pure and well-defined product by growing the polymer from a single, unique site on the protein," he said. "Another twist to our work is that instead of using PEG, we used a somewhat different polymer that turns out to be as good and perhaps even better than PEG in extending circulation of the protein in the body."

There are many protein-polymer based medications in use today, such as human growth hormones, drugs to stimulate blood cell formation in cancer patients and anti-viral agents. Chilkoti will be reviewing existing protein-polymer drugs to determine if the new technique can improve their effectiveness.

In their experiments, the researchers used myoglobin, a protein responsible for creating the red pigments that give meat its color. Instead of creating a chemical bond between myoglobin and the polymer, the Duke researchers chose a specific spot on the protein, known as the N-terminus, and then grew the polymer from that specific location. Every protein has an N-terminus, so this method should be broadly useful, Chilkoti said.

After demonstrating they could create a stable compound using the new method, the researchers tested how well it worked by comparing its actions to the conventional compound in mice.

"The conventional compound myoglobin had a half-life of three minutes and was totally eliminated by two hours," Chilkoti explained. "By contrast, the new compound had a half-life 40 times greater and remained in circulation for 18 hours. The longer a protein remains in the system and is active, the more it helps the patient."

"The dramatic improvement in how the new compound acted encourages us that this new approach will have broad applications in improving the efficacy of many protein drugs," Chilkoti said.

Another benefit of this approach, according to Chilkoti, is that the polymer should naturally degrade in the body over time and be easily excreted. "Because the compound is biodegradable, we should in principle be able to make even larger protein-polymer combinations with potentially even better pharmacologic properties," he said.

The researchers plan to apply their invention to other protein-based therapies, such as for cancer and diabetes, to determine if they can improve effectiveness of the protein drug while reducing its undesirable toxic effects.


'/>"/>

Contact: Richard Merritt
Richard.merritt@duke.edu
919-660-8414
Duke University
Source:Eurekalert

Related biology news :

1. MGH researchers describe new way to identify, evolve novel enzymes
2. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
3. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
4. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
5. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
6. 454 Sequencing: Science paper describes a novel, highly efficient method of sequencing ancient DNA
7. Scientists discover novel way to remove iron from ferritin
8. Identification of a novel class of (not-so) small RNAs
9. A novel way found to prevent protein plaques implicated in Alzheimers
10. Sirtris unveils promising, novel SIRT1 activators for treating diseases of aging
11. Feinstein researchers develop new genetic method and identify novel genes for schizophrenia
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/7/2016)... -- Syngrafii Inc. and San Antonio Credit Union (SACU) ... Syngrafii,s patented LongPen™ eSignature "Wet" solution into SACU,s ... in greater convenience for SACU members and operational ... document workflow and compliance requirements. Logo ... Highlights: ...
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... N.C. (PRWEB) , ... June 27, 2016 , ... ... commercial operations for Amgen, will join the faculty of the University of ... as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS ... the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The company, ... proud to add Target to its list of well-respected retailers. This list includes ...
(Date:6/23/2016)... , June 23, 2016 Houston Methodist ... the Cy-Fair Sports Association to serve as their ... agreement, Houston Methodist Willowbrook will provide sponsorship support, ... connectivity with association coaches, volunteers, athletes and families. ... the Cy-Fair Sports Association and to bring Houston ...
Breaking Biology Technology: