Navigation Links
Novel nanotechnology heals abscesses caused by resistant staph bacteria
Date:12/22/2009

December 22, 2009 (BRONX, NY) Researchers at the Albert Einstein College of Medicine of Yeshiva University have developed a new approach for treating and healing skin abscesses caused by bacteria resistant to most antibiotics. The study appears in the journal PLoS One.

Abscesses are deep skin infections that often resist antibiotics and may require surgical drainage. For their new treatment strategy, the Einstein scientists developed tiny nanoparticles smaller than a grain of pollen that carry nitric oxide (NO), a gas that helps in the body's natural immune response to infection.

When topically applied to abscesses in mice, the particles released NO that traveled deep into the skin, clearing up the infections and helping to heal tissue.

"Our work shows that nitric oxide-releasing nanoparticles developed here at Einstein can effectively treat experimental skin abscesses caused by antibiotic-resistant Staphylococcus aureus, even without surgical drainage," says Joshua D. Nosanchuk, M.D., senior author of the study and associate professor of medicine and of microbiology & immunology.

"This is important," he notes, "because several million people are treated for staph infections every year in the U.S. Increasingly, these infections are caused by methicillin-resistant Staph aureus or MRSA the serious and potentially fatal "superbug" that we tackled in this study."

According to the Centers for Disease Control and Prevention, approximately 94,000 cases of invasive MRSA infections occur each year, resulting in 19,000 deaths. In a 2006 study involving multiple emergency rooms across the U.S., MRSA was isolated from 61 percent of abscesses.

"To have a topical medication for staph infections instead of one that you have to take orally and systemically would revolutionize the way we take care of our patients," Dr. Nosanchuk adds.

In research published earlier this year in the Journal of Investigative Dermatology, the interdisciplinary Einstein team showed that NO-containing nanoparticles could clear up superficial skin infections caused by MRSA. The current study of abscesses was designed to learn whether the nanoparticles could combat infections deep in the skin.

The researchers experimentally induced MRSA abscesses in 60 mice. The abscesses were either left untreated, topically treated with "empty" nanoparticles, or topically treated with nanoparticles containing NO and were evaluated four days later.

The microbial concentration in the abscesses of mice treated with NO-containing nanoparticles was significantly reduced compared with abscesses in the other two groups. In addition, the abscesses of mice treated with NO-containing nanoparticles had undergone much more healing, as shown by their improved appearance and by the far greater amounts of collagen (a protein important in maintaining the structure of skin) deposited within them.

The Einstein nanoparticle technology was developed by Joel M. Friedman, M.D., Ph.D., the Young Men's Division Chair of Physiology and professor of physiology & biophysics and of medicine, and Adam Friedman, M.D., currently the chief resident in the division of dermatology of the department of medicine at Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein.

When introduced on the skin or into the body, the tiny nanoparticles absorb water, swell up, and start releasing their cargo in a sustained manner. The nanoparticles can carry and release a variety of drugs as well as chemicals, including NO.

Produced naturally by cells throughout the body, NO has important biological properties including killing bacteria, healing wounds, and increasing blood flow by dilating blood vessels. "But NO is a very short-lived gas," notes Dr. Joel Friedman, "and, until now, methods to deliver it to targeted tissues in the proper doses have proven elusive."

Einstein researchers are also pursuing other potential therapeutic uses for their nanoparticles. For example, along with Kelvin Davies, Ph.D., associate professor of urology, the Friedmans recently showed that nanoparticles loaded with either NO or tadalafil (Cialis) show promise as a topical cream-like treatment for erectile dysfunction.

Earlier this month, Makefield Therapeutics, Inc., a biotechnology company based in Newtown, PA, licensed patent rights to Einstein's NO-containing nanoparticle technology. The company plans to use topical formulations of the NO-containing nanoparticles to treat antibiotic-resistant infections and erectile dysfunction.


'/>"/>

Contact: Deirdre Branley
sciencenews@einstein.yu.edu
718-430-3101
Albert Einstein College of Medicine
Source:Eurekalert  

Related biology news :

1. H1N1 influenza adopted novel strategy to move from birds to humans
2. Lupus Research Institute announces 2009 novel research grants
3. Novel NIST connector uses magnets for leak-free microfluidic devices
4. UD start-up company prepares to commercialize novel detector for medical, military applications
5. TAXIS Pharmaceuticals licenses novel antimicrobial technology from Rutgers and UMDNJ
6. Novel on-off switch mechanism stops cancer in its tracks
7. University of Miami receives NIH grant to support novel technology for tissue engineering
8. Novel bacterial strains clear algal toxins from drinking water
9. Novel genetic region identified for childhood asthma in Mexicans
10. Novel polymer could improve protein-based drugs
11. Novel mechanism revealed for increasing recombinant protein yield in tobacco
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Novel nanotechnology heals abscesses caused by resistant staph bacteria
(Date:8/15/2017)... ivWatch LLC , a medical device company focused on improving the ... its ISO 13485 Certification, the global standard for medical device quality ... ... device for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as it validates ...
(Date:6/23/2017)... and ITHACA, N.Y. , ... and Cornell University, a leader in dairy research, today ... bioinformatics designed to help reduce the chances that the ... the onset of this dairy project, Cornell University has ... for Sequencing the Food Supply Chain, a food safety ...
(Date:5/16/2017)...  Veratad Technologies, LLC ( www.veratad.com ), an innovative ... verification solutions, announced today they will participate as a ... thru May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions ... evolving digital world, defining identity is critical to nearly ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... Oct. 9, 2017  BioTech Holdings announced today ... which its ProCell stem cell therapy prevents limb ... The Company, demonstrated that treatment with ProCell resulted ... saved as compared to standard bone marrow stem ... resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness ... targeting the needs of consumers who are incorporating medical marijuana into their wellness ... Arizona. , As operators of two successful Valley dispensaries, The Giving Tree’s two ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially available Hi-C ... software to perform Hi-C metagenome deconvolution using their own facilities, supplementing the ...
(Date:10/6/2017)... ... October 06, 2017 , ... On ... and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The ... The event is free and open to the public, but registration is required. ...
Breaking Biology Technology: