Navigation Links
Novel antitoxin strategy developed using 'tagged binding agents'
Date:2/25/2010

North Grafton, Mass., February 25, 2010 A study involving the world's deadliest substance has yielded a new strategy to clear toxins from the bodywhich may lead to more efficient strategies against toxins that may be used in a bioterrorist event, as well as snake bites, scorpion stings, and even some important chronic diseases.

A Tufts-led team developed the new strategy to deliver small binding agents that seek out Botulinum toxin molecules and bind to them at several points. The binding agents each contain a common "tag" that is recognized by a single, co-administered anti-tag antibody. Once the toxin molecule is surrounded by bound antibodies, it is flushed out of the system through the liver before it can poison the body.

Botulinum toxin, which causes botulism, is the most acutely poisonous substance known and is considered among the most dangerous bioterrorist threats. Studies have shown that one gram of the toxin, which is produced by a bacterium that lives in soil, could kill upwards of a million people. Although currently available antitoxins can be mass produced and delivered in the event of an outbreak, they are costly to develop, house and deliverand have a short shelf-life.

The Tufts study, in collaboration with researchers at Thomas Jefferson University in Philadelphia, is published this month in the journal Infection and Immunity and was funded by the National Institutes of Allergy and Infectious Diseases (NIAID) and the New England Regional Center for Excellence (NERCE) for Biodefense and Emerging Infectious Diseases.

"We've proven this approach to protect against Botulinum intoxication in mice and we hope this will lead to rapid development and deployment of many new anti-toxin therapiesfor botulism and beyond," said Charles B. Shoemaker, PhD, professor of biomedical sciences at Tufts University's Cummings School of Veterinary Medicine and the study's corresponding author.

The new findings expand on a 2002 breakthrough at the University of California at San Francisco, where scientists combined three monoclonal antibodies against Botulinum toxin that attached to different parts of the toxin molecule. Including three different antibodies dramatically increased the potency compared to fewer antibodies and prevented intoxication even following high-dose exposure. However, developing, producing, and stockpiling three different monoclonal antibodies against each toxin type is very expensive.

Instead of using three antibodies, the Tufts approach uses three small binding agents to direct a single monoclonal antibody to multiple sites on the biomolecule being targeted for clearance. The type of binding agents used can be selected from many scaffolds developed for commercial therapeutic applications (e.g. nanobodies, aptamers, darpins, FN3, microbodies, etc). These binding agents can be rapidly identified and improved using modern technologies and generally have excellent commercial production and product shelf-life properties. The single anti-tag monoclonal antibody can also be selected to have optimal isotype and commercialization properties.

What's more, the binding agents can be produced with more than one tag, which enables them to direct more antibodies to the toxinand synergistically improve target clearance from the body. Many binding agent scaffolds can be produced as functional multimers so that the different binding agents could be produced as "beads on a string," leading to a single molecule that targets one, or even several, biomolecules for clearance from the body.

Using this approach, the researchers say, one would only need to create new binding agents, not new antibodies, to create a therapy to clear a toxin from the bodypaving the way for new therapies that combat toxins ranging from animal venom to bioterrorist agents such as ricin. Tufts researchers are currently targeting Shiga toxin and C. difficile along with other types of Botulinum toxin. Future plans include targeting clearance of pathogenic cytokines that are implicated in inflammation and autoimmune diseases.

Treatment for botulism usually requires many weeks of intensive-care hospitalization, and exposure of even a small number of people would seriously disrupt health care delivery in any major city, studies have indicated. A vaccine has been developed, but widespread use is not currently being considered, the researchers say, since the likelihood of exposure is uncertain. Also, vaccination would block accepted treatments for a number of overactive muscle conditions, including dystonias, which respond to the toxin when administered in very small doses.


'/>"/>

Contact: Tom Keppeler
tom.keppeler@tufts.edu
508-839-7910
Tufts University, Health Sciences
Source:Eurekalert

Related biology news :

1. Intelligent people have unnatural preferences and values that are novel in human evolution
2. Novel studies of decomposition shed new light on our earliest fossil ancestry
3. Linheng Li proposes novel theory for mammalian stem cell regulation
4. GE Healthcare to evaluate and develop novel imaging technology
5. Novel nanotechnology heals abscesses caused by resistant staph bacteria
6. H1N1 influenza adopted novel strategy to move from birds to humans
7. Lupus Research Institute announces 2009 novel research grants
8. Novel NIST connector uses magnets for leak-free microfluidic devices
9. UD start-up company prepares to commercialize novel detector for medical, military applications
10. TAXIS Pharmaceuticals licenses novel antimicrobial technology from Rutgers and UMDNJ
11. Novel on-off switch mechanism stops cancer in its tracks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... --> --> ... Research "Digital Door Lock Systems Market - Global Industry Analysis, ... global digital door lock systems market in terms of revenue ... forecast to grow at a CAGR of 31.8% during the ... enterprises (MSMEs) across the world and high industrial activity driving ...
(Date:3/11/2016)... March 11, 2016 --> ... research report "Image Recognition Market by Technology (Pattern Recognition), ... Advertising), by Deployment Type (On-Premises and Cloud), by Industry ... published by MarketsandMarkets, the global market is expected to ... 29.98 Billion by 2020, at a CAGR of 19.1%. ...
(Date:3/9/2016)... GARDENS, Fla. , March 9, 2016 /PRNewswire/ ... management authentication and enrollment solutions, today announced the ... DigitalPersona ® Altus multi-factor authentication platform. ... and InfoSec managers to step-up security where it,s ... Washington, DC . ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... MIAMI (PRWEB) , ... April 27, 2016 , ... ... joined the GSCG Advisory Board. Ross is the founder of GSCG affiliate Kimera Labs ... of Miami, where he studied hematopoietic stem cell transplantation for hematologic disorders and the ...
(Date:4/27/2016)... ReportsnReports.com adds 2016 global ... on US, EU, China ... healthcare business intelligence collection of its growing online ... on the Flow Cytometry market spread across 153 ... tables and figures is now available at ...
(Date:4/26/2016)... , ... April 26, 2016 , ... The European ... been selected as one of three finalists for the European Inventor Award 2016 in ... innovation prize will be announced at a ceremony in Lisbon on June 9th. , ...
(Date:4/26/2016)... ... ... This unique "Fertility Happy Hour" event will be held at The Saguaro Hotel ... on female fertility and the reproductive technologies that are empowering a new generation of ... The Arizona Center, will give a short presentation and answer questions about age ...
Breaking Biology Technology: