Navigation Links
Novel ORNL technique enables air-stable water droplet networks
Date:5/13/2014

OAK RIDGE, Tenn., May 13, 2014 -- A simple new technique to form interlocking beads of water in ambient conditions could prove valuable for applications in biological sensing, membrane research and harvesting water from fog.

Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a method to create air-stable water droplet networks known as droplet interface bilayers. These interconnected water droplets have many roles in biological research because their interfaces simulate cell membranes. Cumbersome fabrication methods, however, have limited their use.

"The way they've been made since their inception is that two water droplets are formed in an oil bath then brought together while they're submerged in oil," said ORNL's Pat Collier, who led the team's study published in the Proceedings of the National Academy of Sciences. "Otherwise they would just pop like soap bubbles."

Instead of injecting water droplets into an oil bath, the ORNL research team experimented with placing the droplets on a superhydrophobic surface infused with a coating of oil. The droplets aligned side by side without merging.

To the researchers' surprise, they were also able to form non-coalescing water droplet networks without including lipids in the water solution. Scientists typically incorporate phospholipids into the water mixture, which leads to the formation of an interlocking lipid bilayer between the water droplets.

"When you have those lipids at the interfaces of the water drops, it's well known that they won't coalesce because the interfaces join together and form a stable bilayer," ORNL coauthor Jonathan Boreyko said. "So our surprise was that even without lipids in the system, the pure water droplets on an oil-infused surface in air still don't coalesce together."

The team's research revealed how the unexpected effect is caused by a thin oil film that is squeezed between the pure water droplets as they come together, preventing the droplets from merging into one. Watch a video of the process on ORNL's YouTube channel.

With or without the addition of lipids, the team's technique offers new insight for a host of applications. Controlling the behavior of pure water droplets on oil-infused surfaces is key to developing dew- or fog-harvesting technology as well as more efficient condensers, for instance.

"Our finding of this non-coalescence phenomenon will shed light on these droplet-droplet interactions that can occur on oil-infused systems," Boreyko said.

The ability to create membrane-like water droplet networks by adding lipids leads to a different set of functional applications, Collier noted.

"These bilayers can be used in anything from synthetic biology to creating circuits to bio-sensing applications," he said. "For example, we could make a bio-battery or a signaling network by stringing some of these droplets together. Or, we could use it to sense the presence of airborne molecules."

The team's study also demonstrated ways to control the performance and lifetime of the water droplets by manipulating oil viscosity and temperature and humidity levels.


'/>"/>

Contact: Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308
DOE/Oak Ridge National Laboratory
Source:Eurekalert  

Related biology news :

1. Researchers discover novel therapy for Crohns disease
2. New clinical trial explores novel noninvasive colon cancer screening test
3. Notre Dame researchers using novel method to combat malaria drug resistance
4. Unique adaptations to a symbiotic lifestyle reveal novel targets for aphid insecticides
5. Key proteins newly discovered form and function may provide novel cancer treatment target
6. Novel discovery by NUS scientists paves the way for more effective treatment of cancers
7. London researchers discover novel mechanism involved in key immune response
8. Mexican rock heroes trial novel green trading system
9. VTT and GE Healthcare developing novel biomarkers to predict Alzheimers disease
10. Cleveland Clinic researchers receive $5 million grant to discover novel pathways to heart disease
11. Novel nano-structures to realize hydrogens energy potential
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Novel ORNL technique enables air-stable water droplet networks
(Date:3/27/2021)... ... March 25, 2021 , ... Phlexglobal announced ... Planet Group, has selected Phlexglobal and its innovative regulatory SaaS software, PhlexSubmission, as ... a comprehensive review of five regulatory software companies, with the review team including ...
(Date:3/27/2021)... ... 25, 2021 , ... The 2021 Virtual Conference on Clinical Trial Supply-Europe ... More and more, clinical trial supply conferences are featuring speakers and forums that ... Asymmetrex’s founder and CEO, James L. Sherley, M.D., Ph.D., presented a talk ...
(Date:3/23/2021)... ... March 23, 2021 , ... G-CON Manufacturing (G-CON), the ... by Matica Biotechnology (Matica Bio), a contract development and manufacturing organization (CDMO) specializing ... the cleanroom build out for its new GMP production facility in College Station, ...
Breaking Biology News(10 mins):
(Date:3/27/2021)... ... March 24, 2021 , ... ... Life Sciences and Healthcare firms of all sizes, adds depth to its team ... specialist. Pardillo, who earned his doctorate in computational chemistry from Florida International University ...
(Date:3/27/2021)... ... March 24, 2021 , ... ABI Wellness, ... and reporting approach designed under CEO Mark Watson, today announced a webinar dedicated ... featuring guest speakers Dr. Cameron Clark, Neuropsychologist and Founder of Sharp Thinking, and ...
(Date:3/27/2021)... ... ... The Xtalks editorial team is pleased to announce the launch of the ... joined by editorial team members Ayesha Rashid, Sydney Perelmutter and Mira Nabulsi to discuss ... including insights from industry experts. , The Xtalks Life Science podcast will feature ...
(Date:3/23/2021)... Conn. (PRWEB) , ... March 23, 2021 , ... ... develops solutions for characterizing microbiome populations down to the strain level, recently unveiled ... applications. , Not all microbes are created equal: some are easy to ...
Breaking Biology Technology: