Navigation Links
Novel NIST connector uses magnets for leak-free microfluidic devices
Date:11/18/2009

Like other users of microfluidic systems, National Institute of Standards and Technology (NIST) researcher Javier Atencia was faced with an annoying engineering problem: how to simply, reliably and most of all, tightly, connect his tiny devices to the external pumps and reservoirs delivering liquids into the system. While pondering this one day, he randomly picked up two magnets and began playing with them. As the magnets pulled apart and then snapped back together, Atencia realized that he had his solution.

In a paper recently published online in Lab on a Chip,* Atencia and colleagues describe the result of that brainstorm: a new, inexpensive, reusable and highly efficient microfluidic connector. The NIST connector employs a ring magnet with a O-ring gasket on its bottom and a tube in its center set directly atop the inlet or outlet port of a microfluidic channel embedded in a glass chip. A disc magnet on the underside of the chip holds the first magnetand its tubingsecurely in place.

Unlike traditional approaches to connectorssuch as gluing the tubing directly to the chip or mounting a male/female connection with the tubing attached to the male portionthe NIST magnetic connector is reusable; can be positioned anywhere on the chip; and eliminates any possibility of broken bonds that leak, chips cracked during heat curing of the glue, or microfluidic devices turned useless by excess glue entering the channels. Additionally, the reliability, flexibility and fast assembly of the NIST connector compares favorably to a recently developed press-fit system (where springs produce the sealing force) but the magnetic connectors cost hundreds of dollars less to build and operate.

As reported in their paper, the NIST researchers demonstrated the viability of their magnetic connector in a microfluidic device designed to generate liposomes (tiny bubble-shaped membranes that can be used to transport drugs throughout the body), a fairly port-intensive task. A solution of lipids suspended in isopropyl alcohol is pumped at a high rate into a microchannel through one inlet and hit with a buffer solution pumped in through four other ports. The convection and diffusion that occurs as the liquid streams mix produces liposomes that exit the microfluidic device through an outlet port. Magnetic connectors at the five inlets and one outlet were removed and reseated numerous times without any visible leakage.

The NIST researchers state that their magnetic connector is suitable for most microfluidic applications except those dealing with iron-containing (ferro) fluids, superparamagnetic particles (particles so small that their magnetic properties decrease with time and fluctuations in temperature), cells tagged with magnetic particles, or high-temperatures (greater than 80 degrees Celsius).


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. UD start-up company prepares to commercialize novel detector for medical, military applications
2. TAXIS Pharmaceuticals licenses novel antimicrobial technology from Rutgers and UMDNJ
3. Novel on-off switch mechanism stops cancer in its tracks
4. University of Miami receives NIH grant to support novel technology for tissue engineering
5. Novel bacterial strains clear algal toxins from drinking water
6. Novel genetic region identified for childhood asthma in Mexicans
7. Novel polymer could improve protein-based drugs
8. Novel mechanism revealed for increasing recombinant protein yield in tobacco
9. La Jolla Institute discovers novel tumor suppressor
10. Got zinc? New zinc research suggests novel therapeutic targets
11. Funxional successfully completes initial clinical trial of FX125L, an anti-inflammatory drug with a novel mechanism of action
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Novel NIST connector uses magnets for leak-free microfluidic devices
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... ... Weeks after hosting a carpal tunnel syndrome workshop with Dr. Oz on ... of the Fitzmaurice Hand Institute, has announced the addition of MRI diagnostic imaging services ... only 1 of about 3 currently available in the United States. Developed specifically for ...
(Date:5/27/2016)... and READING, England , ... Indegene ( http://www.indegene.com ), ein führender Anbieter ... die Life-Science-Branche, Pharmaunternehmen und Gesundheitsorganisationen, und TranScrip ... von innovativen wissenschaftlichen Support-Services für den gesamten ... IntraScience heute den Ausbau ihrer bestehenden Allianz ...
(Date:5/26/2016)... New Jersey and READING, ... Indegene ( http://www.indegene.com ), a leading ... to life science, pharmaceutical and healthcare organisations and ... of innovative scientific support throughout the product lifecycle, ... with the launch of IntraScience.      ...
(Date:5/26/2016)... ... May 26, 2016 , ... After several promising ... at the City of Knowledge in Panama, a 6 year-old Duchenne’s muscular ... US earlier this year following FDA approval of a second application for a ...
Breaking Biology Technology: