Navigation Links
Novel NIST connector uses magnets for leak-free microfluidic devices

Like other users of microfluidic systems, National Institute of Standards and Technology (NIST) researcher Javier Atencia was faced with an annoying engineering problem: how to simply, reliably and most of all, tightly, connect his tiny devices to the external pumps and reservoirs delivering liquids into the system. While pondering this one day, he randomly picked up two magnets and began playing with them. As the magnets pulled apart and then snapped back together, Atencia realized that he had his solution.

In a paper recently published online in Lab on a Chip,* Atencia and colleagues describe the result of that brainstorm: a new, inexpensive, reusable and highly efficient microfluidic connector. The NIST connector employs a ring magnet with a O-ring gasket on its bottom and a tube in its center set directly atop the inlet or outlet port of a microfluidic channel embedded in a glass chip. A disc magnet on the underside of the chip holds the first magnetand its tubingsecurely in place.

Unlike traditional approaches to connectorssuch as gluing the tubing directly to the chip or mounting a male/female connection with the tubing attached to the male portionthe NIST magnetic connector is reusable; can be positioned anywhere on the chip; and eliminates any possibility of broken bonds that leak, chips cracked during heat curing of the glue, or microfluidic devices turned useless by excess glue entering the channels. Additionally, the reliability, flexibility and fast assembly of the NIST connector compares favorably to a recently developed press-fit system (where springs produce the sealing force) but the magnetic connectors cost hundreds of dollars less to build and operate.

As reported in their paper, the NIST researchers demonstrated the viability of their magnetic connector in a microfluidic device designed to generate liposomes (tiny bubble-shaped membranes that can be used to transport drugs throughout the body), a fairly port-intensive task. A solution of lipids suspended in isopropyl alcohol is pumped at a high rate into a microchannel through one inlet and hit with a buffer solution pumped in through four other ports. The convection and diffusion that occurs as the liquid streams mix produces liposomes that exit the microfluidic device through an outlet port. Magnetic connectors at the five inlets and one outlet were removed and reseated numerous times without any visible leakage.

The NIST researchers state that their magnetic connector is suitable for most microfluidic applications except those dealing with iron-containing (ferro) fluids, superparamagnetic particles (particles so small that their magnetic properties decrease with time and fluctuations in temperature), cells tagged with magnetic particles, or high-temperatures (greater than 80 degrees Celsius).


Contact: Michael E. Newman
National Institute of Standards and Technology (NIST)

Related biology news :

1. UD start-up company prepares to commercialize novel detector for medical, military applications
2. TAXIS Pharmaceuticals licenses novel antimicrobial technology from Rutgers and UMDNJ
3. Novel on-off switch mechanism stops cancer in its tracks
4. University of Miami receives NIH grant to support novel technology for tissue engineering
5. Novel bacterial strains clear algal toxins from drinking water
6. Novel genetic region identified for childhood asthma in Mexicans
7. Novel polymer could improve protein-based drugs
8. Novel mechanism revealed for increasing recombinant protein yield in tobacco
9. La Jolla Institute discovers novel tumor suppressor
10. Got zinc? New zinc research suggests novel therapeutic targets
11. Funxional successfully completes initial clinical trial of FX125L, an anti-inflammatory drug with a novel mechanism of action
Post Your Comments:
Related Image:
Novel NIST connector uses magnets for leak-free microfluidic devices
(Date:11/12/2015)... Nov. 12, 2015  Arxspan has entered into ... and Harvard for use of its ArxLab cloud-based ... tools. The partnership will support the institute,s efforts ... chemical research information internally and with external collaborators. ... for managing the Institute,s electronic laboratory notebook, compound ...
(Date:11/10/2015)... NEW YORK , Nov. 10, 2015 /PRNewswire/ ... refers to behavioral biometrics that helps to identify ... prevent fraud. Signature is considered as the secure ... for the identification of a particular individual because ... offers more accurate results especially when dynamic signature ...
(Date:11/2/2015)... , Nov. 2, 2015  SRI International has been ... provide preclinical development services to the National Cancer Institute ... will provide scientific expertise, modern testing and support facilities, ... preclinical pharmacology and toxicology studies to evaluate potential cancer ... The PREVENT Cancer Drug Development Program is an ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... 2015  CardioCell LLC, a Stemedica Cell Technologies ... cardiovascular indications, intends to proceed with finalizing a ... from a Heart Failure Advisory Board comprising cardiology ... Board members . In a recent meeting members ... and efficacy data from CardioCell,s on-going chronic heart ...
(Date:12/1/2015)... 1, 2015 Cepheid (Nasdaq: CPHD ) ... the Piper Jaffray Healthcare Conference in New ... is reaffirming its outlook for the fourth quarter of ... to discussing longer term business model expectations. ...  "We continue to be the fastest growing company of ...
(Date:11/30/2015)... ... November 30, 2015 , ... ... physicians, aesthetic practitioners and aesthetics professionals from Central America and abroad for the ... in Panama City, Panama Feb. 17-19, 2016. Testart will present and discuss new ...
(Date:11/30/2015)... /PRNewswire/ - BioAmber Inc. (NYSE: BIOA ), a leader in ... Business Act on Climate Pledge, alongside more than 140 companies ... Obama Administration to demonstrate an ongoing commitment to climate action ... COP21 Paris climate negotiations. ... Canada . --> BioAmber uses biotechnology to ...
Breaking Biology Technology: