Navigation Links
Non-wovens as scaffolds for artificial tissue
Date:5/13/2009

This release is available in German.

When someone's knee hurts with every step it's a sign that the cartilage has been so badly damaged that the bones rub together when walking. Medical scientists are developing a technique to produce cartilage tissue artificially so that patients with such knee problems can walk free of pain again. The aim is also to make tendons and blood vessels in the laboratory. The research scientists place cells on a porous scaffold material, for example a non-woven made of polymer fibers. The cells can then grow on this frame and form tissue. Whether the cells will grow properly into tissue, however, depends on many factors. For instance, the cells only form cartilage if they are subjected to loads comparable with those in the body. To form cartilage the tissue needs to experience the pressure applied by every step. By contrast, blood vessel tissue needs the pulsation of the blood. The scientists reproduce these loads in the cell culture. When the artificial cartilage is inserted in the patient's knee the supporting scaffold is gradually resorbed and only the cartilage tissue remains.

While it is quite easy to produce npn-wovens from thin polymer fibers, it is difficult to describe these materials experimentally and theoretically. What forces do the cells experience when the non-woven is pulled or when a liquid passes through the fibre network? How do cells penetrate the non-woven? How do liquids permeate the non-woven? Research scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and Halle have developed a simulation model which answers these questions and characterizes the fleeces. "The simulation reproduces the mechanical properties of the fleeces and the transport processes the software can therefore also calculate how nutrients are transported to the cells and metabolic products are transported away from the cells when a liquid flows by," explains Dr. Raimund Jaeger, group manager at the IWM. "Understanding these processes can be helpful for cell culture." To produce the model, the research scientists initially studied the mechanical properties of the individual polymer fibers and for this purpose developed a special apparatus. On a silicon chip measuring one square centimeter, the scientists in Halle etched approximately 50 "microtesting machines". They then placed and fastened the fibers over the testing machines. Under the microscope the researchers were able to observe how the fibers behave when they are pulled, how far they stretch and when they snap. As fiber-like structures are frequently encountered in nature and technology, suitable experimental techniques and simulation methods have a wide range of applications.


'/>"/>

Contact: Dr. Raimund Jaeger
raimund.jaeger@iwm.fraunhofer.de
49-761-514-2284
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Smart scaffolds may help heal broken hearts
2. Development of an artificial simulator of the nervous system to do research into diseases
3. Red pandas reveal an unexpected (artificial) sweet tooth
4. Artificial cells, simple model for complex structure
5. TECNALIA uses artificial vision to improve recycling of electronic scrap metal
6. Biomedical researchers create artificial human bone marrow in a test tube
7. Scientists identify cell changes leading to impaired artificial kidney function
8. Evolved Machines Selected as a Prime Contractor for DARPA Program to Engineer an Artificial Olfaction System
9. Researchers design artificial cells that could power medical implants
10. Taking the next step toward advanced artificial limbs
11. Complex ocean behavior studied with artificial upwelling
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Non-wovens as scaffolds for artificial tissue
(Date:11/15/2016)... DUBLIN , Nov 15, 2016 Research ... - Global Forecast to 2021" report to their offering. ... ... reach USD 16.18 Billion by 2021 from USD 6.21 Billion in ... Growth of the bioinformatics market is driven by ...
(Date:6/27/2016)... Research and Markets has announced the addition of the ... The report forecasts the biometrics ... a CAGR of 12.28% during the period 2016-2020. ... with inputs from industry experts. The report covers the market landscape ... includes a discussion of the key vendors operating in this market. ...
(Date:6/22/2016)... , June 22, 2016 On Monday, the ... to industry to share solutions for the Biometric Exit ... Customs and Border Protection (CBP), explains that CBP intends ... departing the United States , in ... to defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
Breaking Biology News(10 mins):
(Date:12/8/2016)...  HedgePath Pharmaceuticals, Inc. (OTCQX: HPPI), a clinical ... to commercialize innovative therapeutics for patients with cancer, ... approved for trading on the OTCQX U.S. market. ... effective today, under the ticker symbol "HPPI." ... must meet high financial standards, follow best practice ...
(Date:12/8/2016)... , Dec. 8, 2016 Eutilex Co. ... billion KRW (US $18.9M) Series A financing. This financing ... G.N. Tech Venture and SNU Bio Angel. This new ... 30.5 billion KRW (US $27.7M) since its founding in ... to bolster the development and commercialization of its immuno-oncology ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selector™ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
(Date:12/7/2016)... ... 07, 2016 , ... A new study published in the ... treated, advanced pancreatic cancer, liquid biopsies are not yet an adequate substitute for ... blood sampling may improve the value of a blood-based test.” The study was ...
Breaking Biology Technology: