Navigation Links
Non-coding DNA implicated in type 2 diabetes
Date:1/12/2014

Variations in non-coding sections of the genome might be important contributors to type 2 diabetes risk, according to a new study.

DNA sequences that don't encode proteins were once dismissed as "junk DNA", but scientists are increasingly discovering that some regions are important for controlling which genes are switched on.

The new study, published in Nature Genetics, is one of the first to show how such regions, called regulatory elements, can influence people's risk of disease.

Type 2 diabetes affects over 300 million people worldwide. Genetic factors have long been known to have an important role in determining a person's risk of type 2 diabetes, alongside other factors such as body weight, diet and age.

Many studies have identified regions of the genome where variations are linked to diabetes risk, but the function of many of these regions is unknown, making it difficult for scientists to glean insights into how and why the disease develops. Only around two per cent of the genome is made up of genes: the sequences that contain code for making proteins. Most of the remainder is shrouded in mystery.

"Non-coding DNA, or junk DNA as it is sometimes known, is the dark matter of the genome. We're only just beginning to unravel what it does," said leading author Professor Jorge Ferrer, a Wellcome Trust Senior Investigator from the Department of Medicine at Imperial College London.

In the new study scientists mapped the regulatory elements that orchestrate gene activity in the cells of the pancreas that produce insulin, a hormone that regulates blood sugar.

In type 2 diabetes, the tissues become less responsive to insulin, resulting in blood sugar levels being too high. Most people can compensate when this happens by producing more insulin, but in people with type 2 diabetes, the pancreas cannot cope with this increased demand.

"The cells that produce insulin appear to be programmed to behave differently in people with type 2 diabetes," said co-author Mark McCarthy, a Wellcome Trust Senior Investigator at the University of Oxford. "This study provides some important clues to the mechanisms which are disturbed in the earliest stages of the development of type 2 diabetes, and may point the way to novel ways of treating and preventing the disease."

The team identified genome sequences that drive gene activity in insulin-producing cells specifically. They found that these sequences are located in clusters, and that genetic variants known to be linked to diabetes risk are also found in these clusters.

"Many people have small DNA variants in such regulatory elements, and these variants affect gene expression in the cells that produce insulin. This knowledge will allow us to understand the detailed mechanisms whereby specific DNA variants predispose to diabetes," said Professor Ferrer.


'/>"/>

Contact: Sam Wong
sam.wong@imperial.ac.uk
44-207-594-2198
Imperial College London
Source:Eurekalert

Related biology news :

1. Garvan Institute receives grant to research role of long non-coding RNAs in Parkinsons disease
2. A hallmark for the development of testicular tumors found in the aberrant regulation of small non-coding RNA
3. Immune system implicated in prematurity complication
4. Protein involved in nerve-cell migration implicated in spread of brain cancer
5. BROCA sequencing approach evaluates all 24 genes implicated in breast cancer
6. Diabetes Research Institute develops oxygen-generating biomaterial
7. New study shines light on barriers to diabetes care in NYC Bangladeshi community
8. Commonly used diabetes drug may help to prevent primary liver cancer
9. Approach to diabetes self-management too narrow, study suggests
10. Gut microbiota transplantation may prevent development of diabetes and fatty liver disease
11. From feast to famine: A metabolic switch that may help diabetes treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/7/2016)... -- Syngrafii Inc. and San Antonio Credit Union (SACU) ... Syngrafii,s patented LongPen™ eSignature "Wet" solution into SACU,s ... in greater convenience for SACU members and operational ... document workflow and compliance requirements. Logo ... Highlights: ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample ... the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
(Date:6/23/2016)... PUNE, India , June 23, 2016 /PRNewswire/ ... culture media market research report to its pharmaceuticals ... company profiles, product details and much more. ... market spread across 151 pages, profiling 15 companies ... now available at http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . ...
Breaking Biology Technology: