Navigation Links
No extra mutations in modified stem cells, study finds
Date:7/9/2014

LA JOLLA-The ability to switch out one gene for another in a line of living stem cells has only crossed from science fiction to reality within this decade. As with any new technology, it brings with it both promise--the hope of fixing disease-causing genes in humans, for example--as well as questions and safety concerns. Now, Salk scientists have put one of those concerns to rest: using gene-editing techniques on stem cells doesn't increase the overall occurrence of mutations in the cells. The new results were published July 3 in the journal Cell Stem Cell.

"The ability to precisely modify the DNA of stem cells has greatly accelerated research on human diseases and cell therapy," says senior author Juan Carlos Izpisua Belmonte, professor in Salk's Gene Expression Laboratory. "To successfully translate this technology into the clinic, we first need to scrutinize the safety of these modified stem cells, such as their genome stability and mutational load."

When scientists want to change the sequence of a stretch of DNA inside cells--either for research purposes or to fix a genetic mutation for therapeutic purposes--they have their choice of two methods. They can use an engineered virus to deliver the new gene to a cell; the cell then integrates the new DNA sequence in place of the old one. Or scientists can use what's known as custom targeted nucleases, such as TALEN proteins, which cut DNA at any desired location. Researchers can use the proteins to cut a gene they want to replace, then add a new gene to the mix. The cell's natural repair mechanisms will paste the new gene in place.

Previously, Belmonte's lab had pioneered the use of modified viruses, called helper-dependent adenoviral vectors (HDAdVs) to correct the gene mutation that causes sickle cell disease, one of the most severe blood diseases in the world. He and his collaborators used HDAdVs to replace the mutated gene in a line of stem cells with a mutant-free version, creating stem cells that could theoretically be infused into patients' bone marrow so that their bodies create healthy blood cells.

Before such technologies are applied to humans, though, researchers like Belmonte wanted to know whether there were risks of editing the genes in stem cells. Even though both common gene-editing techniques have been shown to be accurate at altering the right stretch of DNA, scientists worried that the process could make the cells more unstable and prone to mutations in unrelated genes--such as those that could cause cancer.

"As cells are being reprogrammed into stem cells, they tend to accumulate many mutations," says Mo Li, a postdoctoral fellow in Belmonte's lab and an author of the new paper. "So people naturally worry that any process you perform with these cells in vitro--including gene editing--might generate even more mutations."

To find out whether this was the case, Belmonte's group, in collaboration with BGI and the Institute of Biophysics, Chinese Academy of Sciences in China, turned to a line of stem cells containing the mutated gene that causes sickle cell disease. They edited the genes of some cells using one of two HDAdV designs, edited others using one of two TALEN proteins, and kept the rest of the cells in culture without editing them. Then, they fully sequenced the entire genome of each cell from the four edits and control experiment.

While all of the cells gained a low level of random gene mutations during the experiments, the cells that had undergone gene-editing--whether through HDAdV- or TALEN-based approaches--had no more mutations than the cells kept in culture.

"We were pleasantly surprised by the results," Keiichiro Suzuki, a postdoctoral fellow in Belmonte's lab and an author of the study, says. "People have found thousands of mutations introduced during iPSC reprogramming. We found less than a hundred single nucleotide variants in all cases."

The finding, Li adds, doesn't necessarily mean that there are no inherent risks to using stem cells with edited genes, but that the editing process doesn't make the stem cells any less safe.

"We concluded that the risk of mutation isn't inherently connected to gene editing," he says. "These cells present the same risks as using any other cells manipulated for cell or gene therapy." He adds that two other papers published in the same issue support their results (one by Johns Hopkins University and one from Harvard University and collaborators).

The Belmonte group is planning more studies to address whether gene-repair in other cell types, using other approaches, or targeting other genes could be more or less likely to cause unwanted mutations. For now, they hope their findings encourage those in the field to keep pursuing gene-editing techniques as a potential way to treat genetic diseases in the future.

Other researchers on the study were Jing Qu, April Goebl, Emi Aizawa, Rupa Devi Soligalla, Jessica Kim, Na Young Kim, Hsin-Kai Liao, Chris Benner, and Concepcion Rodriguez Esteban of the Salk Institute for Biological Studies; Chang Yu, Xiaotian Yao, Senwei Tang, Fan Zhang, Feng Chen, Yabin Jin, and Yingrui Li of BGI; and Jing Qu,Tingting Yuan, Ruotong Ren, Xiuling Xu, and Guang-Hui Liu of the Institute of Biophysics, Chinese Academy of Sciences.

The work was supported by the G. Harold and Leila Y. Mathers Charitable Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, the Glenn Foundation, the California Institute of Regenerative Medicine, the National Institutes of Health, the Chinese Academy of Sciences, the Beijing Natural Science Foundation, and the Thousand Young Talents program of China.


'/>"/>
Contact: Kristina Grifantini
press@salk.edu
Salk Institute
Source:Eurekalert  

Related biology news :

1. Chinese herbal extract may help kill off pancreatic cancer cells
2. NREL finds up to 6-cent per kilowatt-hour extra value with concentrated solar power
3. Grape skin extract may soon be answer to treating diabetes
4. Are we ready for contact with extraterrestrial intelligence?
5. Search for extraterrestrial life more difficult than thought
6. Trisomy 21: How an extra little chromosome throws the entire genome off balance
7. Plant extract offers hope for infant motor neuron therapy
8. Garcinia Cambogia Extract Review Company Garcinia Ex Announces the Launch of its Updated Website
9. A magnetic nanoparticles-based method for DNA extraction from the saliva after stroke
10. Wayne State cholesterol study shows algal extracts may counter effects of high fat diets
11. A universal RNA extraction protocol for land plants
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
No extra mutations in modified stem cells, study finds
(Date:2/28/2017)... , Spanien, 27. Februar 2017  EyeLock LLC, ... Iris-Scan, wird seine erstklassige biometrische Lösung zur ... 835 mit X16 LTE auf dem Mobile ... März) am Qualcomm-Stand in Halle 3, Stand ... beinhaltet die Sicherheitsplattform Qualcomm Haven™ – eine ...
(Date:2/26/2017)...  Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring, announces the appointment of ... "Too often, too many offenders return to jail ... trying to tackle this ongoing problem and improve ... members. While significant steps are underway, Securus continues to ...
(Date:2/22/2017)... 22, 2017 With the biometrics market ... identifies four technologies that innovative and agile startups ... share in the changing competitive landscape: multifactor authentication ...   "Companies can no longer afford ... says Dimitrios Pavlakis , Industry Analyst at ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... SEATTLE , March 23, 2017 ... translational development of novel therapies in immuno-oncology, today ... to lead" small molecule compounds that activate interferon ... (RLR) pathways and demonstrate immune-mediated tumor regression in ... in the study who demonstrated complete tumor regression ...
(Date:3/23/2017)... According to a report by Transparency Market Research (TMR), ... the presence of a large pool of participants; however, only a ... Sigma-Aldrich, compete with each other in this market. With Proliant being ... of this market in 2016.  ... As of now, a large number of vendors are ...
(Date:3/23/2017)... NEW YORK , March 23, 2017 ... closer look at four equities in the Biotech industry: ... EYEG), Synthetic Biologics Inc. (NYSE MKT: SYN), and Regulus ... March 21 st , 2017, Credit Suisse upgraded its rating ... stocks by downloading their free report at: ...
(Date:3/22/2017)... 22, 2017 Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today ... (RGC), U.K. Biobank and GSK to generate genetic sequence data ... The initiative will enable researchers to gain valuable insights to ... wide range of serious and life threatening diseases. ... Genetic evidence ...
Breaking Biology Technology: