Navigation Links
Next generation surgical robots: Where's the doctor?
Date:7/20/2010

DURHAM, N.C. -- As physician-guided robots routinely operate on patients at most major hospitals, the next generation robot could eliminate a surprising element from that scenario -- the doctor.

Feasibility studies conducted by Duke University bioengineers have demonstrated that a robot -- without any human assistance -- can locate a man-made, or phantom, lesion in simulated human organs, guide a device to the lesion and take multiple samples during a single session. The researchers believe that as the technology is further developed, autonomous robots could some day perform many more simple surgical tasks.

"Earlier this year we demonstrated that a robot directed by artificial intelligence can on its own locate simulated calcifications and cysts in simulated breast tissue with high repeatability and accuracy," said Kaicheng Liang, a former student in the laboratory of Stephen Smith, director of the Duke University Ultrasound Transducer Group at the Pratt School of Engineering and senior member of the research team. "Now we have shown that the robot can sample up to eight different spots in simulated human prostate tissue."

The results of the Duke research appear in the current issue of the journal Ultrasonic Imaging. An earlier study reported in the January issue of the journal Ultrasound in Medicine and Biology described the Duke team's results on simulated breast tissue. In both experiments, whole turkey breasts were used. Raw turkey breasts are commonly used in medical research because the tissue closely resembles that of humans in texture and density, and appear similar when scanned by ultrasound.

The Duke team combined a "souped-up" version of an existing robot arm with an ultrasound system of its own design. The ultrasound serves as the robot's "eyes" by collecting data from its scan and locating its target. The robot is "controlled" not by a physician, but by an artificial intelligence program that takes the real-time 3-D information, processes it and gives the robot specific commands to perform. The robot arm has a mechanical "hand" that can manipulate the same biopsy plunger device that physicians use to reach a lesion and take samples.

In the latest series of experiments, the robot guided the plunger to eight different locations on the simulated prostate tissue in 93 percent of its attempts. This is important because multiple samples can also determine the extent of any lesion, Smith said.

Smith believes that routine medical procedures, such as biopsies in other tissues in the body, will be performed in the future with minimal human guidance, and at greater convenience and less cost to patients.

An important challenge to be overcome is the speed of data acquisition and processing, though the researchers are confident that faster processors and better algorithms will address that issue. To be clinically useful, all of the robot's actions would need to be in real time, the researchers said.

"One of the beauties of this system is that all of the hardware components are already on the market," Smith said. "We believe that this is the first step in showing that with some modifications, systems like this can be built without having to develop a new technology from scratch."

Advances in ultrasound technology have made these latest experiments possible, the researchers said, by generating detailed, 3-D, moving images in real-time. The Duke team has a long track record of modifying traditional 2-D ultrasound -- like that used to image babies in utero -- into the more advanced 3-D scans. The Duke lab invented the technique in 1991.

"We're now testing the robot on a human mannequin seated at the examining table whose breast is constrained in a stiff bra cup," Smith said. "The breast is composed of turkey breast tissue with an embedded grape to simulate a lesion. Our next step is to move to an excised human breast."


'/>"/>

Contact: Richard Merritt
richard.merritt@duke.edu
919-660-8414
Duke University
Source:Eurekalert  

Related biology news :

1. NIH awards Rice $1.7M for cartilage-regeneration research
2. De La Rue Provides Second-Generation ePassport for Malta
3. Link between iron overload and macular degeneration under study
4. Freely available data supporting next generation of human genetic research
5. NC State to develop next generation HazMat boots
6. MBL scientist awarded next-generation DNA sequencer to monitor water quality
7. Body builders -- the worms that point the way to understanding tissue regeneration
8. Significant findings about protein architecture may aid in drug design, generation of nanomaterials
9. Newly identified growth factor promotes stem cell growth, regeneration
10. Offering hope for tissue regeneration
11. Meteosat Third Generation takes a step forward
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Next generation surgical robots: Where's the doctor?
(Date:6/23/2017)... ARMONK, N.Y. and ITHACA, N.Y. ... IBM ) and Cornell University, a leader in dairy ... combined with bioinformatics designed to help reduce the chances ... breaches. With the onset of this dairy project, Cornell ... the Consortium for Sequencing the Food Supply Chain, a ...
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
(Date:5/16/2017)... , May 16, 2017   Bridge ... health organizations, and MD EMR Systems , ... development partner for GE, have established a partnership ... Portal product and the GE Centricity™ products, including ... EMR. These new integrations will ...
Breaking Biology News(10 mins):
(Date:8/18/2017)... ... August 18, 2017 , ... Producers of ... Federal Hybrids, Inc. in an upcoming episode, scheduled to broadcast fourth quarter 2017. ... explore Federal Hybrids, the independent, family-owned seed company. Educating audiences about its broad ...
(Date:8/16/2017)... ... August 16, 2017 , ... Tunnell Consulting announced ... at the ISPE Annual Meeting and Expo , to be held October 29 ... event’s theme is “Driving innovation to advance patient therapies.” , The ISPE Annual Meeting ...
(Date:8/16/2017)... ... August 16, 2017 , ... ... delivery system, announced it has secured $2M in funding from an impressive group ... Carmen Innovations, and SVG Thrive Fund. With this investment, 3Bar is broadening availability ...
(Date:8/15/2017)... , Aug. 15, 2017 After spending the past ... support with crowdsourced data collection, GeneFo now offers this platform to ... aligning and amplifying support, adherence, and data collection vis a vis ... foundations mark the successful launch of this offer. ... GeneFo ...
Breaking Biology Technology: