Navigation Links
Newly found DNA catalysts cleave DNA with water molecule
Date:8/16/2009

CHAMPAIGN, Ill. Better tools for manipulating DNA in the laboratory may soon be possible with newly discovered deoxyribozymes (catalytic DNA) capable of cleaving single-stranded DNA, researchers at the University of Illinois say.

The deoxyribozymes accomplish the DNA cleavage with the sequence-selectivity and site-selectivity required for a practical catalyst, the researchers say.

"Our work suggests that deoxyribozymes have significant potential as sequence-specific DNA cleavage reagents," said chemistry professor Scott Silverman. "The hope is that we can take this fundamental advance and develop the ability to use DNA as a practical catalyst to cleave double-stranded DNA."

Silverman, postdoctoral research associate Madhavaiah Chandra and graduate student Amit Sachdeva report their discovery in a paper accepted for publication in Nature Chemical Biology and posted on the journal's Web site.

The researchers discovered the new deoxyribozymes while searching for artificial sequences of DNA that could cleave proteins. The newly found catalysts function in a fashion similar to restriction enzymes, although to date by cleaving only single-stranded DNA.

Restriction enzymes, which allow scientists to cut and paste portions of double-stranded DNA, are the fundamental catalysts of molecular biology.

Each restriction enzyme, however, has a limited number of DNA sequences it can cut. Consequently, only a few percent of arbitrarily chosen DNA sequences can be cut by commercially available restriction enzymes.

Like natural restriction enzymes, the new catalysts are both sequence-specific and site-specific. "This means we can target a particular sequence, and we know we will cut at only one site within that sequence," Silverman said. "By appropriately picking the recognition and enzyme regions of the catalyst, we should be able to cut many more DNA sequences than is possible with current restriction enzymes."

The new DNA catalysts require two metal ions manganese and zinc to carry out their catalysis, "which is intriguing, because many natural protein-based nucleases (which cleave DNA) similarly require two metal ions," Silverman said. "One or both of the metals are presumably involved in the chemical mechanism by which our DNA catalyst achieves hydrolysis of the DNA backbone."

DNA hydrolysis is a very challenging chemical reaction, much more difficult to perform than the cleavage of a strand of RNA, Silverman said. In cleaving DNA, a water molecule must be brought in for the breaking reaction to occur. Also, both the DNA and the catalyst must be arranged appropriately in three-dimensional space.

How all of this happens with the DNA catalysts is not yet clear. Silverman's research group continues to probe the structure and mechanism of the catalysts, along with identifying and characterizing catalysts with different recognition sites.

"So far, we have achieved cleavage of single-stranded DNA targets," Silverman said. "The next big step is to cleave double-stranded DNA targets."


'/>"/>

Contact: James E. Kloeppel
kloeppel@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Newly discovered gene fusion may lead to improved prostate cancer diagnosis
2. Newly discovered snow roots are evolutionary phenomenon
3. Newly discovered reactions from an old drug may lead to new antibiotics
4. Newly discovered epidermal growth factor receptor active in human pancreatic cancers
5. Newly discovered gene plays vital role in cancer
6. DNA evidence is in, newly discovered species of fish dubbed H. psychedelica
7. Newly described contaminant sources in Katrina-flooded homes pose health risks
8. UC Davis research shows that newly discovered drug reduces heart enlargement
9. Obesity starts in the head? 6 newly discovered genes for obesity have a neural effect
10. Newly found enzymes may play early role in cancer
11. Newly identified gene powerful predictor of colon cancer metastasis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/19/2016)... TORONTO , 19 de diciembre de 2016 /PRNewswire/ ... que permitirá el desarrollo acelerado de MSC-1, un anticuerpo humanizado que ... de tumor en 2017, con múltiples sitios previstos a lo largo ... ... en el factor inhibidor de leucemia (LIF), una citoquina pleiotrópica que ...
(Date:12/16/2016)... 2016 The global wearable medical device market, in terms ... from USD 5.31 billion in 2016, at a CAGR of 18.0% ... ... advancements in medical devices, launch of a growing number of smartphone-based ... among healthcare providers, and increasing focus on physical fitness. ...
(Date:12/15/2016)... DUBLIN , Dec 15, 2016 ... Research and Markets has announced ... to their offering. The report forecasts the global military ... 2016-2020. The report has been prepared based on an ... market landscape and its growth prospects over the coming years. The report ...
Breaking Biology News(10 mins):
(Date:1/13/2017)... Research and Markets has announced the addition of the "Global ... ... CAGR of 16.83% during the period 2017-2021. The report ... market for 2017-2021. To calculate the market size, the report considers the ... also includes a a discussion of the key vendors operating in this ...
(Date:1/13/2017)... NY (PRWEB) , ... January 13, 2017 , ... ... meet every cuvette-related demand that it has found among its diverse customer base. ... for use in most brands electroporators including BTX and Bio-Rad. FireflySci is ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... A SUCCESS , VTI, Vertebral Technologies, Inc., announces the successful outcome of ... device. Since September 2016, VTI (Vertebral Technologies, Inc.) has partnered with Mexico-based ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... with short response times capable of performing routine electrochemical biosensing has increased ... electrodes provide fast, sensitive detection and quantification of various analytes in complex ...
Breaking Biology Technology: