Navigation Links
Newly discovered molecular switch helps decide cell type in early embryo development
Date:8/11/2008

CINCINNATI Researchers have discovered a central molecular switch in fruit fly embryos that opens new avenues for studying the causes of birth defects and cancer in humans. Writing about their study in the Aug. 12 Developmental Cell, scientists at Cincinnati Children's Hospital Medical Center determined the switch to be a main tuning mechanism for instructing cells whether to form sensory nerves or blood cells in different parts of the body.

The molecular switch occurs when two central control genes, Hox and Senseless (Sens), compete for influence to regulate genetic signals that instruct cells to differentiate and begin tissue and/or blood formation, said Brian Gebelein, Ph.D., a researcher in the division of Developmental Biology at Cincinnati Children's and corresponding author of the study.

Conserved between species through the course of evolution all the way from Drosophilia fruit flies to vertebrates and humans Hox genes are responsible for regulating other downstream genes, to determine body position and help form major body structures during early development. Sens regulates downstream genes that support the development of sensory organs, such as those important to hearing, touch or sight.

Dr. Gebelein said the competition between Hox and Sens appears to be complementary, creating a balance of instructional influence that results in normal development. Looking forward the researchers plan to deepen their understanding of how this balance works, and what happens in the way of birth defects or disease when it becomes unbalanced should Sens or Hox exercise excessive dominance.

"We now have a central mechanism we can use as a tool to look for triggers in the genome that work with Hox and Sens to regulate the formation of neurons and blood cells," said Dr. Gebelein. "This allows us to identify other key genes downstream of Hox and Sens, determine their role in development based on what happens with cell fate decisions, and look for the causes of birth defects and disease."

Although Hox genes have long been known to specify distinct cell types along the developing body axes of vertebrates and non-vertebrates, it hasn't been clear how they regulate downstream gene transcription to form specific cells or tissues. In what the researchers called "an unexpected Hox transcriptional mechanism," they detected the permissive regulation of a secreted protein called EGF, or epidermal growth factor. EGF is a cell messenger protein that affects cell differentiation, growth and epidermal development. The research team noticed that Hox's permissive regulation of EGF led to cell specification when it interacted with the influence of Sens in the peripheral nervous system.

Dr. Gebelein's laboratory studies nervous system development and genes that specify neuron subtypes, their formation and how they migrate to their appropriate locations in the developing body. Understanding the influence of Hox transcription factors in cell differentiation along the anterior and posterior axis of the Drosophilia melangaster fruit fly is an important focal point of this research.

In collaboration with H. Leighton Grimes, Ph.D., of Cincinnati Children's division of Immunobiology, Dr. Gebelein is also studying how Hox competes with Sens and its control of a growth factor called Gfi-1. In the current study, the researchers note that ongoing mouse studies at Cincinnati Children's show Gfi-1 and Hox are linked to neural and blood development. The researchers are looking into the implications this has for leukemia, said Dr. Gebelein, also an associate professor of pediatrics at the University of Cincinnati School of Medicine.


'/>"/>

Contact: Nick Miller
nicholas.miller@cchmc.org
513-803-6035
Cincinnati Children's Hospital Medical Center
Source:Eurekalert

Related biology news :

1. Newly discovered monkey is threatened with extinction
2. Leatherback turtles newly discovered migration route may be roadmap to salvation
3. Newly described dragon protein could be key to bird flu cure
4. Death, division or cancer? Newly discovered checkpoint process holds the line in cell division
5. Newly identified role for power plants in human cells could lead to targeted therapies
6. Newly defined signaling pathway could mean better biofuel sources
7. Newly-identified exercise gene could help with depression
8. Newly created cancer stem cells could aid breast cancer research
9. Circadian rhythm-metabolism link discovered
10. Surprisingly rapid changes in the Earths core discovered
11. New source of heart stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2016)... 2016 Aware, Inc. (NASDAQ: AWRE ), a leading ... its fourth quarter and year ended December 31, 2015.  ... quarter of 2015 was $6.9 million, an increase of 61% compared ... in the fourth quarter of 2015 was $2.6 million compared to ... --> --> Higher revenue and operating income ...
(Date:2/8/2016)... PRAGUE, Czech Republic , February 8, 2016 ... first EU-regulated global payment platform which presents innovation ... Voice Biometrics Authentication feature called VoiceKey. --> ... payment platform which presents innovation for clients, comfort ... feature called VoiceKey. --> Worldcore ...
(Date:2/4/2016)... , Feb. 4, 2016 The ... apparently one of the most popular hubs of ... MetaHIT and other huge studies of human microbiota, ... past few years, the microbiome space has literally ... biomedical research. This report focuses on biomedical ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... ... 11, 2016 , ... Global Stem Cells Group, ... Ecuador. The new facility will provide advanced protocols and state-of-the-art techniques in cellular ... , The new GSCG clinic is headed by four prominent Ecuadorian physicians, ...
(Date:2/10/2016)... , Feb.10, 2016 ASAE is introducing a ... Management Companies (AMC) the option of joining or renewing ... fee determined by staff size, every employee in any ... ASAE and reap all available member benefits.   ... new organizational membership options will allow organizations of any ...
(Date:2/10/2016)... ... February 10, 2016 , ... Benchmark Research, a ... promotion of two long-standing principal investigators (PI) to the roles of Chief Medical ... Development. , Dr. Laurence Chu, a Benchmark Research PI in the Austin office, ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... on Microsoft Azure. On Azure, Arvados provides capabilities for managing and processing genomic ... for Microsoft Azure from major institutions collecting and analyzing genomic data,” said Adam ...
Breaking Biology Technology: