Navigation Links
Newly discovered molecular switch helps decide cell type in early embryo development
Date:8/11/2008

CINCINNATI Researchers have discovered a central molecular switch in fruit fly embryos that opens new avenues for studying the causes of birth defects and cancer in humans. Writing about their study in the Aug. 12 Developmental Cell, scientists at Cincinnati Children's Hospital Medical Center determined the switch to be a main tuning mechanism for instructing cells whether to form sensory nerves or blood cells in different parts of the body.

The molecular switch occurs when two central control genes, Hox and Senseless (Sens), compete for influence to regulate genetic signals that instruct cells to differentiate and begin tissue and/or blood formation, said Brian Gebelein, Ph.D., a researcher in the division of Developmental Biology at Cincinnati Children's and corresponding author of the study.

Conserved between species through the course of evolution all the way from Drosophilia fruit flies to vertebrates and humans Hox genes are responsible for regulating other downstream genes, to determine body position and help form major body structures during early development. Sens regulates downstream genes that support the development of sensory organs, such as those important to hearing, touch or sight.

Dr. Gebelein said the competition between Hox and Sens appears to be complementary, creating a balance of instructional influence that results in normal development. Looking forward the researchers plan to deepen their understanding of how this balance works, and what happens in the way of birth defects or disease when it becomes unbalanced should Sens or Hox exercise excessive dominance.

"We now have a central mechanism we can use as a tool to look for triggers in the genome that work with Hox and Sens to regulate the formation of neurons and blood cells," said Dr. Gebelein. "This allows us to identify other key genes downstream of Hox and Sens, determine their role in development based on what happens with cell fate decisions, and look for the causes of birth defects and disease."

Although Hox genes have long been known to specify distinct cell types along the developing body axes of vertebrates and non-vertebrates, it hasn't been clear how they regulate downstream gene transcription to form specific cells or tissues. In what the researchers called "an unexpected Hox transcriptional mechanism," they detected the permissive regulation of a secreted protein called EGF, or epidermal growth factor. EGF is a cell messenger protein that affects cell differentiation, growth and epidermal development. The research team noticed that Hox's permissive regulation of EGF led to cell specification when it interacted with the influence of Sens in the peripheral nervous system.

Dr. Gebelein's laboratory studies nervous system development and genes that specify neuron subtypes, their formation and how they migrate to their appropriate locations in the developing body. Understanding the influence of Hox transcription factors in cell differentiation along the anterior and posterior axis of the Drosophilia melangaster fruit fly is an important focal point of this research.

In collaboration with H. Leighton Grimes, Ph.D., of Cincinnati Children's division of Immunobiology, Dr. Gebelein is also studying how Hox competes with Sens and its control of a growth factor called Gfi-1. In the current study, the researchers note that ongoing mouse studies at Cincinnati Children's show Gfi-1 and Hox are linked to neural and blood development. The researchers are looking into the implications this has for leukemia, said Dr. Gebelein, also an associate professor of pediatrics at the University of Cincinnati School of Medicine.


'/>"/>

Contact: Nick Miller
nicholas.miller@cchmc.org
513-803-6035
Cincinnati Children's Hospital Medical Center
Source:Eurekalert

Related biology news :

1. Newly discovered monkey is threatened with extinction
2. Leatherback turtles newly discovered migration route may be roadmap to salvation
3. Newly described dragon protein could be key to bird flu cure
4. Death, division or cancer? Newly discovered checkpoint process holds the line in cell division
5. Newly identified role for power plants in human cells could lead to targeted therapies
6. Newly defined signaling pathway could mean better biofuel sources
7. Newly-identified exercise gene could help with depression
8. Newly created cancer stem cells could aid breast cancer research
9. Circadian rhythm-metabolism link discovered
10. Surprisingly rapid changes in the Earths core discovered
11. New source of heart stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... , Nov 15, 2016 Research and ... Global Forecast to 2021" report to their offering. ... ... USD 16.18 Billion by 2021 from USD 6.21 Billion in 2016, ... Growth of the bioinformatics market is driven by the ...
(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/15/2016)... York , June 15, 2016 ... new market report titled "Gesture Recognition Market by Application ... Forecast, 2016 - 2024". According to the report, the  ... 11.60 billion in 2015 and is estimated to ... USD 48.56 billion by 2024.  Increasing ...
Breaking Biology News(10 mins):
(Date:12/4/2016)... ... December 03, 2016 , ... Microbial genomics leader ... grant award has been made to Dr. Renato Polimanti of Yale University School ... the oral microbiome. Grant proposals have been vetted by the company’s scientific review ...
(Date:12/2/2016)... ... December 02, 2016 , ... In anticipation ... and lumbar disc production, company President, Jake Lubinski will be traveling to Switzerland ... AxioMed disc in Bern, Lucerne, and Zurich to discuss the benefits of a ...
(Date:12/2/2016)... , Dec. 2, 2016 Amgen (NASDAQ: ... ) today announced the submission of a Marketing Authorization Application ... a biosimilar candidate to Avastin ® (bevacizumab). The companies ... to the EMA. "The submission of ABP ... seeks to expand our oncology portfolio," said Sean E. ...
(Date:12/2/2016)... ... 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will be ... at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria December ... clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring the ...
Breaking Biology Technology: