Navigation Links
Newly described 'dragon' protein could be key to bird flu cure

ARGONNE, Ill. (July 15, 2008) -- Scientists and researchers have taken a big step closer to a cure for the most common strain of avian influenza, or "bird flu," the potential pandemic that has claimed more than 200 lives and infected nearly 400 people in 14 countries since it was identified in 2003.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory, in conjunction with scientists from China and Singapore, have crystallized and characterized the structure of one of the most important protein complexes of the H5N1 virus, the most common strain of bird flu.

All viruses, including H5N1, contain only a small number of proteins that govern all of the viruses' functions. In H5N1, perhaps the most important of these proteins is RNA polymerase, which contains the instructions that allows the virus to copy itself along with all of its genetic material. The Argonne study focused on H5N1's RNA polymerase protein, which contains three subunits: PA, PB1 and PB2.

After performing X-ray crystallography on the protein crystals at Argonne's Structural Biology Center 19ID beamline at the Advanced Photon Source, the researchers saw a surprising resemblance in the protein structure's image. "When we mapped out the PA subunit, it looked very much like the head of a dragon," said Argonne biophysicist Andrzej Joachimiak. "One domain looked like the dragon's brains, and the other looked like its mouth."

During RNA replication the phase during which the virus "reproduces" all three of the subunits of the protein assemble themselves in a particular configuration. In order for this congregation to take place, the researchers determined the end of the PB1 subunit has to insert itself and bind to the "dragon's mouth" part of the PA subunit.

This unexpected relationship between the two subunits could inspire a number of different therapies or vaccines for H5N1 that rely on muzzling the "dragon's" jaws with another molecule or chemical compound that would block the PB1 subunit's access to the PA site, according to Joachimiak. "If we can put a bit in the dragon's mouth, we can slow or even potentially someday stop the spread of avian flu," he said. "Since we are talking about a relatively small protein surface area, finding a way to inhibit RNA replication in H5N1 seems very feasible."

Joachimiak hopes to more precisely identify the types of compounds that could inhibit RNA replication in H5N1 by looking at the atomic-level grooves and pockets within the PA "mouth" region. According to Joachimiak, scientists must gain a more thorough understanding of the geometry of that small region in order to effectively synthesize drugs that could prevent the further spread of bird flu.


Contact: Steve McGregor
DOE/Argonne National Laboratory

Related biology news :

1. Newly created cancer stem cells could aid breast cancer research
2. Newly-identified exercise gene could help with depression
3. Newly defined signaling pathway could mean better biofuel sources
4. Newly identified role for power plants in human cells could lead to targeted therapies
5. Death, division or cancer? Newly discovered checkpoint process holds the line in cell division
6. Pathogens use previously undescribed mechanism to sabotage host immune system
7. Magnetic snakes control fluids, gravity-defying droplets, and solving a dragonfly mystery
8. Successful cooperation extends Dragon Program
9. Protein chatter linked to cancer activation
10. Scientists link fragile X tremor/ataxia syndrome to binding protein in RNA
11. Researchers identify proteins involved in new neurodegenerative syndrome
Post Your Comments:
(Date:11/19/2015)... 2015  Based on its in-depth analysis of the ... with the 2015 Global Frost & Sullivan Award for ... presents this award to the company that has developed ... of the market it serves. The award recognizes the ... on customer base demands, the overall impact it has ...
(Date:11/18/2015)... New York , November 18, 2015 ... Market Research has published a new market report titled ... Growth, Trends, and Forecast, 2015 - 2021. According to the ... in 2014 and is anticipated to reach US$29.1 bn ... to 2021. North America ...
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces ... joined its Board of Directors. --> ... after recently retiring from the partnership at TPG Capital, ... companies with over $140 Billion in revenue.  He founded ... across all the TPG companies, from 1997 to 2013.  ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... ... 25, 2015 , ... A long-standing partnership between the Academy ... been formalized with the signing of a Memorandum of Understanding. , AMA Executive ... Karl Minter and Capt. Albert Glenn Tuesday, November 24, 2015, at AMA Headquarters ...
(Date:11/24/2015)... ... 24, 2015 , ... The United States Golf Association (USGA) today announced Dr. ... Award. Presented annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished ... , Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for ... of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference ... ISPE hosted the largest number of attendees in more than a decade. ...
(Date:11/24/2015)... (PRWEB) , ... November 24, 2015 , ... The Academy ... Special Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the ... last few years. Many AMA members have embraced this type of racing and several ...
Breaking Biology Technology: