Navigation Links
New yeast can ferment more sugar, make more cellulosic ethan
Date:6/7/2010

WEST LAFAYETTE, Ind. - Purdue University scientists have improved a strain of yeast that can produce more biofuel from cellulosic plant material by fermenting all five types of the plant's sugars.

Nathan Mosier, an associate professor of agricultural and biological engineering; Miroslav Sedlak, a research assistant professor of agricultural and biological engineering; and Nancy Ho, a research professor of chemical engineering, used genes from a fungus to re-engineer a yeast strain Ho developed at Purdue. The new yeast can ferment the sugar arabinose in addition to the other sugars found in plant material such as corn stalks, straw, switchgrass and other crop residues.

"Natural yeast can ferment three sugars: galactose, manose and glucose," Ho said. "The original Ho yeast added xylose to that, and now the fifth, arabinose, has been added."

The addition of new genes to the Ho yeast strain should increase the amount of ethanol that can be produced from cellulosic material. Arabinose makes up about 10 percent of the sugars contained in those plants.

In addition to creating this new arabinose-fermenting yeast, Mosier, Sedlak and Ho also were able to develop strains that are more resistant to acetic acid. Acetic acid, the main ingredient in vinegar, is natural to plants and released with sugars before the fermentation process during ethanol production. Acetic acid gets into yeast cells and slows the fermentation process, adding to the cost of ethanol production.

"It inhibits the microorganism. It doesn't produce as much biofuel, and it produces it more slowly," Mosier said. "If it slows down too much, it's not a good industrial process."

Mosier, Sedlak and Ho compared the genes in the more resistant strains to others to determine which genes made the yeast more resistant to acetic acid. By improving the expression of those genes, they increased the yeast's resistance.

Mosier said arabinose is broken down in the same way as the other four sugars except for the first two steps. Adding the fungus genes allowed the yeast to create necessary enzymes to get through those steps.

"This gave the yeast a new tool set," Sedlak said. "This gives the yeast the tools it needs to get arabinose into the chain."

The team's findings on acetic acid were published in the June issue of the journal FEMS Yeast Research. The findings on arabinose were published in the early online version of the journal Applied Microbiology and Biotechnology.

Mosier, Sedlak and Ho will continue to improve the yeast to make it more efficient during industrial ethanol production and more resistant to inhibitors. The. U.S. Department of Energy funded their research.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Discovery: Yeast make plant hormone that speeds infection
2. You had me at hello: Frisky yeast know who to shmoo after 2 minutes
3. Genetic patterns rise from huge yeast samples
4. Scientists find new genes for cancer, other diseases in plants, yeast and worms
5. Sugar-hungry yeast to boost biofuel production
6. 2010 Yeast Genetics and Molecular Biology Meeting
7. Charles Drew cancer studies with yeast yield excellent results
8. Helpful yeast battles food-contaminating aflatoxin
9. Yeast missing sex genes undergo unexpected sexual reproduction
10. Jungle yeast
11. New study reveals the protein that makes phosphate chains in yeast
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... Calif. , Jan. 19, 2017 ... enhancing user experience and security for consumer electronics, ... next-generation payment processing systems and cybersecurity solutions, today ... banks, enterprises and financial institutions worldwide to bolster ... of the end-to-end secure user authentication platforms they ...
(Date:1/13/2017)... , Jan. 13, 2017 Sandata ... solutions for the homecare industry, including Electronic Visit ... industry expert, Justin Jugs, as Senior Vice President ... than 15 years of homecare experience to Sandata, ... developing strategic plans to align Sandata,s suite of ...
(Date:1/12/2017)... and PUNE, India , January 12, 2017 ... Forecasts, 2015 - 2022," projects that the global biometric technology market is expected to ... 2016 to 2022. Continue Reading ... ...      ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... ... ... Nipro Corporation (Osaka, Japan) and Transonic Systems Inc. (New York, USA) announced ... and sales rights for all non-OEM Transonic products in Japan. As partners for more ... Nipro - Transonic JV is a natural next step to advance best practices and ...
(Date:1/21/2017)... , Jan. 21, 2017   Boston Biomedical , ... designed to target cancer stemness pathways, today presented data ... napabucasin, at the 2017 American Society of Clinical Oncology ... . In a Phase Ib/II ... designed to inhibit cancer stemness pathways by targeting STAT3 ...
(Date:1/20/2017)... MALDEN, MA (PRWEB) , ... ... ... the leader in Less Exposure Surgery (LES®) Technologies, announced today the next ... the PedFuse Pedicle Screw System platform). In contrast to the competition, SpineFrontier ...
(Date:1/19/2017)... 19, 2017 Research and Markets ... has announced the addition of the ... Forecast to 2025" report to their offering. ... The report provides a detailed analysis on current and future market trends ... using estimated market values as the base numbers Key ...
Breaking Biology Technology: