Navigation Links
New way to generate abundant functional blood vessel cells from human stem cells discovered
Date:1/20/2010

NEW YORK (Jan. 20, 2010) -- In a significant step toward restoring healthy blood circulation to treat a variety of diseases, a team of scientists at Weill Cornell Medical College has developed a new technique and described a novel mechanism for turning human embryonic and pluripotent stem cells into plentiful, functional endothelial cells, which are critical to the formation of blood vessels. Endothelial cells form the interior "lining" of all blood vessels and are the main component of capillaries, the smallest and most abundant vessels. In the near future, the researchers believe, it will be possible to inject these cells into humans to heal damaged organs and tissues.

The new approach allows scientists to generate virtually unlimited quantities of durable endothelial cells -- more than 40-fold the quantity possible with previous approaches. Based on insights into the genetic mechanisms that regulate how embryonic stem cells form vascular endothelial cells, the approach may also yield new ways to study genetically inherited vascular diseases. The study appears in the advance online issue of Nature Biotechnology.

"This technique is the first of its kind with serious potential as a treatment for a diverse array of diseases, especially cardiovascular disease, stroke and vascular complications of diabetes," says Dr. Shahin Rafii, the study's senior author. Dr. Rafii is the Arthur B. Belfer Professor in Genetic Medicine and co-director of the Ansary Stem Cell Institute at Weill Cornell Medical College, and an investigator of the Howard Hughes Medical Institute.

In recent years, enormous hopes have been pinned on stem cells as the source of future cures and treatments. Indeed, human embryonic stem cells have the potential to become any one of the more than 200 types of adult cells. However, the factors and pathways that govern their differentiation to abundant derivatives that could be used to repair organs have remained poorly understood.

A major challenge for Dr. Rafii's lab has been to improve their understanding, and hence control, of the differentiation process (how stem cells convert to various cell types), and then to generate enough vascular endothelial cells -- many millions -- so they can be used therapeutically.

To meet this challenge, the scientists first screened for molecular factors that come into play when stem cells turn into endothelial cells. Their findings led them to a strategy that significantly boosts the efficiency of producing these cells.

Then, the researchers tracked the differentiation process in real-time using a green fluorescent protein marker developed by Dr. Daylon James, the study's first author and assistant research professor in the Department of Reproductive of Medicine at Weill Cornell Medical College. They found that when they exposed stem cells to a compound that blocks TGF-beta (a growth factor involved in cell specialization) at just the right time during cell culturing, the propagation of endothelial cells dramatically increased.

Even more striking, they found that the cells worked properly when injected into mice. The cells were quickly assimilated into the animals' circulatory systems, and functioned alongside normal vasculature.

To achieve long-lasting clinical benefits, there remain additional hurdles to exploiting endothelial cells generated in vitro. Indeed, a fundamental prerequisite to using vascular cells in regenerative medicine has been the proper assembly in vivo of new blood vessels from stem-cell-derived cells, according to Dr. Sina Rabbany, who is an adjunct professor at Weill Cornell Medical College and professor of bioengineering at Hofstra University. Dr. Rabbany emphasizes that, in addition to manipulating biological factors implicated in endothelial cell differentiation, the impact of blood flow on endothelial cells is critical to engineering durable, vascularized organs. With the plentiful supply of endothelial cells that the new methods provide, Dr. Rabbany's team is working to build biological scaffolds that model the microenvironment of the vasculature, so that the vessels they generate will be functional and long-lasting in patients.

Another major obstacle to clinical use of cultured endothelial cells is the potential of immune rejection when the cells are injected into a patient. To address this risk, one approach would be to create a large, genetically diverse bank of human embryonic stem cells that, on demand, could be converted into endothelial cells that are compatible with specific patients.

"Given the success rate our group has shown in generating human embryonic stem cells from donated normal and diseased embryos, this new approach has broad implications not only for regenerative medicine, but also for the study of genetic diseases of the vasculature," states Dr. Zev Rosenwaks, who is director and physician-in-chief of the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine as well as the director of the Tri-Institutional Stem Cell Initiative Derivation Unit at Weill Cornell Medical College.

The new endothelial cell culture is currently being validated in ongoing research at Weill Cornell using a number of stem cell "lines," or "families" of stem cells. "Employing a highly sophisticated derivation technology, we have been able to generate 11 normal and diseased human embryonic cell lines from discarded embryos at the Tri-Institute Derivation Unit at Weill Cornell," states Dr. Nikica Zaninovic, an assistant professor at the Department of Reproductive of Medicine who is spearheading the human embryonic stem cell derivation effort. Using the new differentiation methods, several of these new embryonic stem cell lines have been turned into vascular cells.

Testing in humans is the next major step in verifying the ability of this breakthrough cell-based approach to restore blood supply to injured organs. Armed with this new technology and under the umbrella of support from the Ansary Stem Cell Institute and Tri-Institutional Stem Cell Initiative (Tri-SCI), this team of scientists is hoping to transfer their methods to the clinic within the next five years.

The current study sheds light on the generation of human embryonic vasculature in ways that have not previously been feasible due to obstacles associated with the use of human embryonic tissue. As Dr. James explains, "The unbiased screening technique we used is a major technological advance that opens up possibilities for discovery of how human embryonic stem cells morph into the specific mature cells that compose the brain, liver, pancreas, and so on. Our general approach can be applied to additional human tissues and help other stem cell research groups develop and maintain specialized cell types in the larger effort to understand human development -- and to heal many different kinds of human diseases and injuries."

The Tri-Institutional Stem Cell Initiative, supported by a generous gift from The Starr Foundation, is a collaborative venture of Memorial Sloan-Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College.


'/>"/>

Contact: Andrew Klein
ank2017@med.cornell.edu
212-821-0560
New York- Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College
Source:Eurekalert

Related biology news :

1. Ethanol-powered vehicles generate more ozone than gas-powered ones
2. Supportive materials will help regenerate heart tissue
3. $2.4 million stimulus fuels effort to regenerate injured spinal cords
4. Stem cell success points to way to regenerate parathyroid glands
5. P[acman]-generated fruit fly gene library: A new research tool
6. Gene therapy appears safe to regenerate gum tissue
7. Cellulosic biofuel technology will generate low-cost green fuel, says major study
8. Researchers generate functional neurons from somatic cells
9. Columbia University scientist devises new way to more rapidly generate bone tissue
10. Fires regenerate African grassland
11. Cow power could generate electricity for millions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
(Date:5/9/2016)... 9, 2016 Elevay is currently ... expanding freedom for high net worth professionals seeking travel ... globally connected world, there is still no substitute for ... duplicate sealing your deal with a firm handshake. This ... taking advantage of citizenship via investment programs like those ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... of Infosys (NYSE: INFY ), and Samsung SDS, ... partnership that will provide end customers with a more ... payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) ... financial services, but it also plays a fundamental part in ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... (PRWEB) , ... June 27, 2016 , ... Parallel ... clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module ... circle with the physician and clinical trial team. , Using the CONSULT module, patients ...
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
Breaking Biology Technology: