Navigation Links
New way of removing excess nitrogen from the environment
Date:11/1/2010

Excess nitrogen from agricultural and urban lands is contaminating groundwater, streams, lakes and estuaries, where it causes harmful algal blooms and contributes to fish kills.

Cost-effective approaches to removing this nitrogen from croplands and urban stormwater runoff before it reaches sensitive water bodies have been elusive.

But simple and inexpensive technologies are on the horizon. A recent scientific workshop on denitrification brought together ecologists, engineers and policy experts to find answers.

Denitrification is a biological process carried out by soil and aquatic microorganisms, in which forms of reactive nitrogen are converted to unreactive and harmless dinitrogen gas.

Findings from the workshop, held in May, 2009, at the University of Rhode Island, are published in the November, 2010, special issue of the scientific journal Ecological Engineering.

The workshop was sponsored by the National Science Foundation (NSF)'s Denitrification Research Coordination Network (RCN), established to enhance collaboration among researchers investigating denitrification.

"This special issue of Ecological Engineering, with its focus on managing denitrification in human-dominated landscapes, highlights our need to understand Earth's microorganisms and their processes," says Matt Kane, program director in NSF's Division of Environmental Biology, which funded the RCN and the workshop.

"The RCN brought together an international and interdisciplinary group of scientists and engineers to synthesize the knowledge necessary to provide pure water for generations to come."

At the workshop, more than 40 participants combined their expertise to address the goal of using ecological principles in engineering design to control nitrogen pollution.

One workshop goal was to evaluate a new and relatively inexpensive way to treat wastewater and drainage from agricultural lands using "denitrifying bioreactors."

These bioreactors use common waste products, such as wood chips, to provide a food source for naturally occurring microorganisms. The microbes convert dissolved nitrogen into harmless nitrogen gas, which is then released to the atmosphere.

Research results in Ecological Engineering are reported from New Zealand, Canada and several locations in the United States.

All confirm that denitrifying bioreactors may be used in many settings, and operate well in a range of temperatures.

The systems have been successful in the cleanup of domestic effluent from small townships, septic tank systems and wastes from dairy farms, says Louis Schipper of the University of Waikato, New Zealand, author of the lead paper in the journal.

"Denitrifying bioreactors have been integrated into agricultural fields," adds Eric Davidson of The Woods Hole Research Center in Falmouth, Mass., and co-author of the journal's lead paper.

"Underground drainage pipes there remove excess water that contains excess nitrogen. By intercepting some of this drainage water, direct inputs of nitrate to surface water can be reduced."

The largest bioreactor tested, by Schipper and colleagues Stewart Cameron and Soren Warneke at the University of Waikato, is 200 meters long by five meters wide by two meters deep. It treats effluent from greenhouse-grown tomatoes.

Research led by Will Robertson of the University of Waterloo found that bioreactors may operate for more than a decade without replacement of wood chips or substantive maintenance.

Similar longevity was confirmed in research in Iowa by Tom Moorman of the USDA-Agricultural Research Service.

Studies by D.Q. Kellogg and Art Gold of the University of Rhode Island demonstrate that recent advances in geospatial data--such as computer-based maps of geologic and land-use patterns--provide a decision-support tool for local regulatory and planning agencies.

These advances, Kellogg and Gold say, will help reduce nitrate-loading to downstream waters.

A study conducted at the University of California at Davis by Harold Leverenz and reported in the journal showed that plants may be grown on the surface of denitrifying bioreactors, providing biodiversity benefits.

"Research presented in this special issue of Ecological Engineering goes a long way toward applying a scientific understanding of the biological processes of denitrification to the engineering challenges of denitrifying bioreactors," says Davidson.

"The resulting guidelines and principles for denitrifying bioreactor design and operation are an additional option in the land manager's tool box."


'/>"/>

Contact: Cheryl Dybas
cdybas@nsf.gov
703-292-7734
National Science Foundation
Source:Eurekalert

Related biology news :

1. An easy way to find a needle in a haystack by removing the haystack
2. Succimer found ineffective for removing mercury
3. Low sperm count may be associated with prenatal testosterone excess
4. Diatom genome helps explain success in trapping excess carbon in oceans
5. Study: Excessive use of antiviral drugs could aid deadly flu
6. UTMB study identifies women at risk of gaining excessive weight with injectable birth control
7. New study finds way to stop excessive bone growth following trauma or surgery
8. Excess DNA damage found in cells of patients with Friedreichs ataxia
9. Anorexics found to have excess fat-- in their bone marrow
10. Community interventions and in-home visits may slow excess weight gain in American Indian children
11. Nitrogen applied
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2016)...  IMPOWER physicians supporting Medicaid patients in ... standard in telehealth thanks to a new partnership with ... IMPOWER patients can routinely track key health measurements, such ... and, when they opt in, share them with IMPOWER ... local retail location at no cost. By leveraging this ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
(Date:3/23/2016)... , March 23, 2016 ... erhöhter Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender ... das Unternehmen mit SpeechPro zusammenarbeitet, um erstmals ... Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im Rahmen ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/24/2016)... ... 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona combed ... pleural mesothelioma. Their findings are the subject of a new article on the Surviving ... signposts in the blood, lung fluid or tissue of mesothelioma patients that can help ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: