Navigation Links
New twist on life's power source
Date:3/11/2008

Stanford, CA A startling discovery by scientists at the Carnegie Institution puts a new twist on photosynthesis, arguably the most important biological process on Earth. Photosynthesis by plants, algae, and some bacteria supports nearly all living things by producing food from sunlight, and in the process these organisms release oxygen and absorb carbon dioxide. But two studies by Arthur Grossman and colleagues*+ reported in Biochimica et Biophysica Acta and Limnology and Oceanography suggest that certain marine microorganisms have evolved a way to break the rulesthey get a significant proportion of their energy without a net release of oxygen or uptake of carbon dioxide. This discovery impacts not only scientists basic understanding of photosynthesis, but importantly, it may also impact how microorganisms in the oceans affect rising levels of atmospheric carbon dioxide.

Grossmans team investigated photosynthesis in a marine Synechococcus, a form of photosynthetic bacteria called cyanobacteria (formerly blue-green algae). These single-celled organisms dominate phytoplankton populations over much of the worlds oceans and are important contributors to global primary productivity. Grossman and his colleagues wanted to understand how Synechococcus could thrive in the iron-poor waters that cover large areas of the ocean, since certain activities of normal photosynthesis require high levels of iron. While others had suggested a potential role of oxygen as accepting electrons from the photosynthetic apparatus in place of carbon dioxide, the studies by Grossmans group show that this activity is significant in the oligotrophic (nutrient-poor) oceans, which cover about half the oceans area.

It seems that Synechococcus in the oligotrophic oceans has solved the iron problem, at least in part, by short-circuiting the standard photosynthetic process, says Grossman. Much of the time this organism bypasses stages in photosynthesis that require the most iron. As it turns out, these are also the stages in which carbon dioxide is taken from the atmosphere.

We realized very quickly that there was something different about the Synechococcus that we were studying says Shaun Bailey, the lead postdoctoral fellow working on this project. The uptake of carbon dioxide and the photosynthetic activities didnt match, so we knew that something other than carbon dioxide was being consumed by photosynthesis, and it turned out to be oxygen. The researchers have tentatively identified the enzyme involved in this process to be plastoquinol terminal oxidase, or PTOX. They point out that this new process must be considered in understanding the net primary productivity attributed to open ocean ecosystems.

During normal photosynthesis, light energy splits water molecules. This releases oxygen and provides electrons which are then used to fix carbon dioxide from the atmosphere and manufacture energy-rich molecules, such as sugars. In the newly discovered process, a large proportion of these electrons are not used to fix carbon dioxide, but instead go to putting the water molecules back together, which results in much less net oxygen production.

It might seem like the cells are just doing a futile light-driven water-to-water cycle, says Bailey. But this is not really true since this novel cycle is also a way of using sunlight to produce energy, while protecting the photosynthetic apparatus from damage that can be caused by the absorption of light.

Capturing energy by a light-driven water-to-water cycle is critical since marine cyanobacteria are constantly using energy to acquire the meager supply of nutrients in their environment. Recently, this newly discovered phenomenon was shown to occur in nature by graduate student Kate Mackey, who made direct measurements of photosynthesis in field samples from the Atlantic and Pacific Oceans. The low nutrient, low iron environments account for about half of the area of the worlds oceans, so they represent a large portion of the Earths surface available for photosynthesis, says Mackey. Our findings show that this novel cycle occurs in two major ocean basins and suggest that a substantial amount of energy from sunlight gets re-routed away from carbon fixation during photosynthesis. This may mean that less carbon dioxide is being removed from the atmosphere by the open ocean photosynthetic organisms than was previously believed.

This discovery represents a paradigm shift in our view of photosynthesis by organisms in the vast, nutrient-starved areas of the open ocean, says Joe Berry of the Carnegie Institutions Department of Global Ecology. We had assumed that like higher plants, the goal was to make carbohydrates from carbon dioxide and store them for later use as a source of energy for any number of cellular functions or growth. We now know that some organisms short-circuit this complicated process, using light in a minimalist way to power cellular processes directly with a far simpler and cheaper (in terms of scarce nutrients such as iron) photosynthetic apparatus. We don't know the full significance of this finding yet, but it is certain to change the way we interpret optical measurements of photosynthetic pigments in the ocean and the way we model ocean productivity.

Wolf Frommer, director of the Carnegie Institutions Department of Plant Biology, agrees about the discoverys ground-breaking importance. If we thought we have understood photosynthesis, this study proves that there is much to be learned about these basic physiological processes. The findings of Grossmans laboratory together with previous evidence reported by Greg Vanlerberghe from the University of Toronto showing that the gene encoding PTOX appears to be widespread in marine cyanobacteria will add depth and a mechanistic foundation for the modeling of primary productivity in the ocean.


'/>"/>

Contact: Arthur Grossman
arthurg@stanford.edu
650-325-1521 x212
Carnegie Institution
Source:Eurekalert

Related biology news :

1. MIT reports new twist in microRNA biology
2. Intellifit(R) Offers Custom-Made Jeans with a High-Tech Twist
3. UCI receives $5M from Edwards Lifesciences
4. Drug commonly used to treat bipolar disorder dramatically increases lifespan in worms
5. SAGEs American Journal of Lifestyle Medicine looks at the health benefit of oats
6. Diet and lifestyle critical to recovery, says study
7. Beyond batteries: Storing power in a sheet of paper
8. Selexis Announces Advanced Approach to Maximize Power of Genetic Elements for Rapid Development of High Performance Cell Lines
9. Enzyme alerts cells powerful army to repair DNA damage
10. Fuel cells gearing up to power auto industry
11. Choices and Challenges forum to address nuclear power issue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... --  The Weather Company , an IBM Business (NYSE: ... in which consumers will be able to interact with IBM ... voice or text and receive relevant information about the product ... have long sought an advertising solution that can create a ... and valuable; and can scale across millions of interactions and ...
(Date:5/16/2016)... NEW YORK , May 16, 2016   ... authentication solutions, today announced the opening of an IoT ... to strengthen and expand the development of embedded ... provides an unprecedented level of convenience and security with ... to authenticate one,s identity aside from DNA. EyeLock,s platform ...
(Date:4/28/2016)... April 28, 2016 First quarter 2016:   ... 966% compared with the first quarter of 2015 The ... 589.1 M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) ... guidance is unchanged, SEK 7,000-8,500 M. The operating margin ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
(Date:6/23/2016)... NC (PRWEB) , ... June 23, 2016 , ... In ... University Hospital in Denmark detail how a patient who developed lymphedema after being treated ... tissue. The results could change the paradigm for dealing with this debilitating, frequent side ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: