Navigation Links
New tool detects Ebola, Marburg quickly, easily
Date:11/22/2010

BOSTON (11-22-10) -- Boston University researchers have developed a simple diagnostic tool that can quickly identify dangerous viruses like Ebola and Marburg. The biosensor, which is the size of a quarter and can detect viruses in a blood sample, could be used in developing nations, airports and other places where natural or man-made outbreaks could erupt.

"By enabling ultra-portable and fast detection, our technology can directly impact the course of our reaction against bio-terrorism threats and dramatically improve our capability to confine viral outbreaks," said Assistant Professor Hatice Altug of the Boston University College of Engineering, who co-led the research team with Assistant Professor John Connor of the Boston University School of Medicine.

Traditional virus diagnostic tools are effective, but require significant infrastructure and sample preparation time. The new biosensor developed at Boston University directly detects live viruses from biological media with little to no sample preparation. The breakthrough is detailed in the Nov. 5 online edition of Nano Letters.

From bird flu to H1N1, outbreaks of fast-spreading viral diseases in recent years have sparked concern of pandemics similar to the 1918 Spanish Flu that caused more than 50 million deaths. A significant fraction of today's viral threats are viruses that use RNA to replicate. Individuals infected with these viruses often show symptoms that are not virus-specific, making them difficult to diagnose. Among them are hemorrhagic fever viruses, such as Ebola and Marburg, which could be used as bio-warfare agents. Critical to identifying and containing future epidemics of RNA-based viruses is the development of rapid, sensitive diagnostic techniques that healthcare providers can quickly deploy so that infected individuals can be quickly identified and treated.

Partly funded through the Boston University Photonics Center and the U.S. Army Research Laboratory, and working in collaboration with the U.S. Army Medical Research Institute for Infectious Diseases, the team has demonstrated reliable detection of hemorrhagic fever virus surrogates (i.e. for the Ebola virus) and pox viruses (such as monkeypox or smallpox) in ordinary biological laboratory settings.

"Our platform can be easily adapted for point-of-care diagnostics to detect a broad range of viral pathogens in resource-limited clinical settings at the far corners of the world, in defense and homeland security applications as well as in civilian settings such as airports," said Altug.

Connor noted an additional, significant advantage of the new technology. "It will be relatively easy to develop a diagnostic device that simultaneously tests for several different viruses," he observed. "This could be extremely helpful in providing the proper diagnosis."

The new biosensor is the first to detect intact viruses by exploiting plasmonic nanohole arrays, or arrays of apertures with diameters of about 200 to 350 nanometers on metallic films that transmit light more strongly at certain wavelengths. When a live virus in a sample solution, such as blood or serum, binds to the sensor surface, the refractive index in the close vicinity of the sensor changes, causing a detectable shift in the resonance frequency of the light transmitted through the nanoholes. The magnitude of that shift reveals the presence and concentration of the virus in the solution.

"Unlike PCR and ELISA approaches, our method does not require enzymatic amplification of a signal or fluorescent tagging of a product, so samples can be read immediately following pathogen binding," said Altug. Ahmet Yanik, Altug's research associate who conducted the experiments, added, "Our platform can detect not only the presence of the intact viruses in the analyzed samples, but also indicate the intensity of the infection process."

The researchers are now working on a highly portable version of their biosensor platform using microfluidic technology designed for use in the field with minimal training.


'/>"/>

Contact: Mike Seele
mseele@bu.edu
617-694-3568
Boston University College of Engineering
Source:Eurekalert

Related biology news :

1. Army-funded technology detects bacteria in water
2. Microfluidics-imaging platform detects cancer growth signaling in minute biopsy samples
3. New technique reliably detects enzyme implicated in cancer and atherosclerosis
4. Stream water study detects thawing permafrost
5. New sensor array detects single molecules for the first time
6. Prototype NIST method detects and measures elusive hazards
7. Novel handheld device detects anthrax with outstanding accuracy and reliability
8. Autonomous robot detects shrapnel
9. Test detects molecular marker of aging in humans
10. New device detects heart disease using less than one drop of blood
11. NASA satellite detects red glow to map global ocean plant health
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
(Date:3/23/2017)... 23, 2017 Research and Markets has announced ... & Trends - Industry Forecast to 2025" report to their ... The ... CAGR of around 8.8% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
(Date:3/20/2017)... , March 20, 2017 At this year,s ... -based biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand ... is this year,s CeBIT partner country. At the largest German biometrics ... in use: fingerprint, face and iris recognition as well as DERMALOG´s multi-biometrics ... ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... ... 2017 , ... Many complicated neurological disorders appear to have ... while men are at greater risk for Parkinson’s disease. Understanding some of the ... of a research program at Worcester Polytechnic Institute (WPI) funded by a new ...
(Date:5/16/2017)... , ... May 16, 2017 , ... ... and cancer diagnostics, has released its ClearID Lung Cancer blood test. Leveraging a ... cancer, this new test is designed to quickly and accurately identify tumor-related genetic ...
(Date:5/15/2017)... ... May 15, 2017 , ... Catalent Pharma Solutions, ... biologics and consumer health products, today announced that it has signed an agreement ... support preclinical and clinical development of TA-46, a novel protein addressing achondroplasia, which ...
(Date:5/12/2017)... , May 12, 2017  Eli Lilly and Company ... galcanezumab, an investigational treatment for the prevention of ... in three Phase 3 studies (EVOLVE-1, EVOLVE-2 and ... of monthly migraine headache days compared to placebo ... robust results from these three studies bring us ...
Breaking Biology Technology: