Navigation Links
New therapy targets for amyloid disease

A major discovery is challenging accepted thinking about amyloids the fibrous protein deposits associated with diseases such as Alzheimer's and Parkinson's and may open up a potential new area for therapeutics.

It was believed that amyloid fibrils - rope-like structures made up of proteins sometimes known as fibres - are inert, but that there may be toxic phases during their formation which can damage cells and cause disease.

But in a paper published today [04 December 2009] in the Journal of Biological Chemistry, scientists at the University of Leeds have shown that amyloid fibres are in fact toxic - and that the shorter the fibre, the more toxic it becomes.

"This is a major step forward in our understanding of amyloid fibrils which play a role in such a large number of diseases," said Professor Sheena Radford of the Astbury Centre for Structural Molecular Biology and the Faculty of Biological Sciences.

"We've revisited an old suspect with very surprising results. Whilst we've only looked in detail at three of the 30 or so proteins that form amyloid in human disease, our results show that the fibres they produce are indeed toxic to cells especially when they are fragmented into shorter fibres. "

Amyloid deposits can accumulate at many different sites in the body or can remain localised to one particular organ or tissue, causing a range of different diseases. Amyloid deposits can be seen in the brain, in diseases such as Parkinson's and Alzheimer's, whereas in other amyloid diseases deposits can be found elsewhere in the body, in the joints, liver and many other organs. Amyloid deposits are also closely linked to the development of Type II diabetes.

Professor Radford said: "Problems in the self-assembly process that results in the formation of amyloid are a natural consequence of longer life. In fact 85 per cent of all cases of disease caused by amyloid deposits are seen in those over the age of sixty or so."

The study was funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), supporting a team that included both cell biologists and biophysicists.

The next stage of this work is to look at a greater number of proteins that form amyloid fibres in order to consolidate these findings, says co-author and cell biologist Dr Eric Hewitt. "What we've discovered is fundamental and offers a whole new area for those working on therapeutics in this area. We anticipate that when we look at amyloid fibres formed from other proteins, they may well follow the same rules."

The team also hopes to discover why the shorter amyloid fibres are more toxic that their longer counterparts.

"It may be that because they're smaller it's easier for them to infiltrate cells," says Dr Hewitt. "We've observed them killing cells, but we're not sure yet exactly how they do it. Nor do we know whether these short fibres form naturally when amyloid fibres assemble or whether some molecular process makes them disassemble or fragment into shorter fibres.These are our next big challenges."


Contact: Clare Elsley
University of Leeds

Related biology news :

1. A new radiation therapy treatment developed for head and neck cancer patients
2. St. Jude finds factors that accelerate resistance to targeted therapy in lymphoblastic leukemia
3. UC health news: molecular pathway may predict chemotherapy effectiveness
4. MIT works toward safer gene therapy
5. Intravenous gene therapy protects normal tissue of mice during whole-body radiation
6. Gene, stem cell therapy only needs to be 50 percent effective to create a healthy heart
7. Fourth Annual International Conference on Cell Therapy for Cardiovascular Diseases
8. Safe and effective therapy discovered for patients with protein-losing enteropathy
9. Ireland Cancer Center researchers advance stem cell gene therapy
10. Dolphin therapy a dangerous fad, Emory researchers warn
11. Cancer and arthritis therapy may be promising treatment for diabetes
Post Your Comments:
Related Image:
New therapy targets for amyloid disease
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
(Date:3/23/2016)... 23, 2016 ... Gesichts- und Stimmerkennung mit Passwörtern     ... MESG ), ein führender Anbieter digitaler ... mit SpeechPro zusammenarbeitet, um erstmals dessen Biometrietechnologie ... die Möglichkeit angeboten, im Rahmen mobiler Apps ...
(Date:3/21/2016)... Massachusetts , March 22, 2016 ... facial recognition with passcodes for superior security   ... ), a leading provider of secure digital communications services, ... their biometric technology and offer enterprise customers, particularly those ... secure facial recognition and voice authentication within a mobile ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is ... projects are designed, built and brought to market. , The Design Lab is ...
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... quality, regulatory and technical consulting, provides a free webinar on Performing ... July 13, 2016 at 12pm CT at no charge. , Incomplete investigations are ...
Breaking Biology Technology: