Navigation Links
New test can precisely pinpoint food pathogens

ITHACA, N.Y. -- With salmonella-tainted ground turkey sickening more than 100 people and listeria-contaminated cantaloupes killing 15 this year, the ability to detect outbreaks of food-borne illness and determine their sources has become a top public health priority.

A new approach, reported online Oct. 14 in the journal Applied and Environmental Microbiology by a collaborative team led by Cornell University scientists, will enable government agencies and food companies to pinpoint the exact nature and origin of food-borne bacteria with unprecedented accuracy, says food science professor Martin Wiedmann.

The standard method of tracing food-borne illness involves breaking up the DNA of bacteria samples into smaller pieces and analyzing their banding patterns.

But scientists often find that different strains of bacteria have common DNA fingerprints that are too genetically similar to be able to differentiate between them, making it difficult to establish whether the salmonella that made one person sick was the same salmonella that infected another person. This was the case in a salmonella outbreak linked to salami made with contaminated black and red pepper that included 272 cases in 44 states between July 2009 and April 2010.

To surmount this challenge, Wiedmann adopted a genomic approach.

By sequencing the genome of 47 samples of the bacteria -- 20 that had been collected from human sources during the outbreak, and 27 control samples collected from human, food, animal and environmental sources before the outbreak -- Wiedmann and his team were able to rapidly discriminate between outbreak-related cases and non-outbreak related cases, isolating four samples believed to be connected to the pepper contamination.

In the process of doing so, he also found other links: A Salmonella strain that led to a nationwide recall of pistachio nuts in 2009 turned up in samples from four people -- only one of whom had reported eating pistachios.

Other connected cases suggested smaller outbreaks of which officials had been previously unaware.

"The use of genome sequencing methods to investigate outbreaks of food-borne bacterial diseases is relatively new, and holds great promise as it can help to identify the temporal, geographical and evolutionary origin of an outbreak," Wiedmann said. "In particular, full genome sequence data may help to identify small outbreaks that may not be easily detected with lower resolution subtyping approaches."

Wiedmann, research associate Henk den Bakker and other lab members developed the single nucleotide polymorphism (SNP) test that is specific to the 2009 pepper-associated outbreak with the help of researchers at Life Technologies Corp. They also collaborated with researchers at Washington State University and departments of health in New York City and New York state.

A similar approach has previously been used in hospital settings to trace pathogenic bacteria such as methicillin-resistant Staphylococcus aureus, but this is its first application for food-borne illness. Wiedmann said he is continuing to perfect the method and use it to test other types of bacteria. The U.S. Food and Drug Administration and other agencies are also starting to use similar approaches.

Contact: Joe Schwartz
Cornell University

Related biology news :

1. Researchers discover precisely how thalidomide causes birth defects
2. Nano-tetherball biosensor precisely detects glucose
3. Scripps Research scientists pinpoint shape-shifting mechanism critical to protein signaling
4. Scripps Research scientists help pinpoint cause of stress-related DNA damage
5. Yale researchers pinpoint reasons for dramatic rise in cesarean births
6. Scientists use super microscope to pinpoint body’s immunity switch
7. New study pinpoints why some microbial genes are more promiscuous than others
8. Pinpointing air pollutions effects on the heart
9. New technology pinpoints genetic differences between cancer and non-cancer patients
10. UNC scientists pinpoint link between light signal and circadian rhythms
11. Satellites pinpoint drivers of urban heat islands in the northeast
Post Your Comments:
(Date:11/17/2015)... 17, 2015 Paris ... --> Paris , qui s,est ... DERMALOG, le leader de l,innovation biométrique, a inventé le ... et empreintes sur la même surface de balayage. Jusqu,ici, ... l,autre pour les empreintes digitales. Désormais, un seul scanner ...
(Date:11/12/2015)... Nov. 12, 2015  Arxspan has entered into ... and Harvard for use of its ArxLab cloud-based ... tools. The partnership will support the institute,s efforts ... chemical research information internally and with external collaborators. ... for managing the Institute,s electronic laboratory notebook, compound ...
(Date:11/9/2015)... Nov. 09, 2015 ... of the "Global Law Enforcement Biometrics ... --> ) has announced ... Enforcement Biometrics Market 2015-2019" report to ... Markets ( ) has announced the ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ... November 30, 2015 , ... Global Stem Cells Group ... a new closed system for isolating adipose-derived stem cells. The announcement starts a new ... adipose tissue. SVF is a component of the lipoaspirate obtained from liposuction of excess ...
(Date:11/30/2015)...  An interventional radiology technique shows promise for helping morbidly ... a study being presented today at the annual meeting of ... (RSNA). --> --> ... radiologists as a way to stop bleeding in emergency situations, ... of treating obesity is new. Mubin Syed , ...
(Date:11/30/2015)... ALBANY, N.Y. , Nov. 30, 2015 /PRNewswire-USNewswire/ ... led by assistant chemistry professor Jan Halámek, is ... level.   --> ...   --> ... researchers at UAlbany have discovered a straightforward concept ...
(Date:11/30/2015)... 30, 2015 Spherix Incorporated (Nasdaq: ... the fostering and monetization of intellectual property, today ... initiatives designed to create shareholder value. ... Spherix. "Based on published reports, the total addressable ... billion and Spherix will seek to secure fair ...
Breaking Biology Technology: