Navigation Links
New technology offers insight into cholesterol
Date:8/14/2014

Researchers from the Copenhagen Center for Glycomics at the University of Copenhagen have studied an important receptor protein called LDLR using new, groundbreaking techniques. The protein plays an important role in the absorption of the bad cholesterol, LDL.

The findings have just been published in the Journal of Biological Chemistry.

The key to major discoveries within the fields of health and diseases is not just hidden in the human DNA code. The proteins encoded by the genes also play an important role, not least the attached sugar chains which give the proteins an identity and handle important functions in the human organism. Researchers have now studied how LDLR is decorated with sugar molecules, so-called glycosylation modifications.

- We have not previously had a simple method for studying where glycosylation modifications are located on proteins in the body, because the sugars are very complicated and appear in different combinations. By removing the Cosmc protein, which is necessary for extending the sugar modifications, we have created cells with simplified glycosylations, which we call SimpleCells. The technique has enabled us to see 20 times as many sugar modifications on our proteins as were previously known, says PhD Nis Borbye Pedersen, formerly postdoc at the Copenhagen Center for Glycomics, now postdoc at the Department of Biology, University of Copenhagen.

A surprising finding

An interesting finding of the study, characterised as a regular breakthrough by Nis Borbye Pedersen, is the discovery of which of the 20 almost identical enzymes is responsible for the so-called O-glycosylation, where the GalNAc sugar molecule is bound to the amino acids serine and threonine.

- So far, we have not really understood why the body has produced 20 more or less identical enzymes. We have now found out that only one of them seems to be involved in precisely these sugar modifications: GalNAc-T11. So the study provides us with an understanding of which tasks the 20 enzymes perform, he says.

Sugar the key to cholesterol

The researchers from the Copenhagen Center for Glycomics are now conducting new studies which indicate that the presence or not of sugar modifications on the receptor protein LDLR does have a functional impact. The new results may play a role in the future treatment of cholesterol.

- We are currently studying whether glycosylation affects the receptor protein's ability to bind and remove cholesterol from the blood. It has long been known that the receptor protein LDLR plays a key role, at the molecular level, to getting rid of the bad cholesterol and thus improving our health, and so understanding the regulation of this important receptor protein is very valuable. At best, it may improve the strategy for treating high blood cholesterol levels, says Nis Borbye Pedersen.


'/>"/>

Contact: Nis Borbye Pedersen
nis.pedersen@bio.ku.dk
45-35-33-04-51
University of Copenhagen The Faculty of Health and Medical Sciences
Source:Eurekalert

Related biology news :

1. Introducing SentiBotics Mobile Robotics Development Kit from Neurotechnology
2. Fruit flies going high-tech: How touchscreen technology helps to understand eating habits
3. Smart Technology Consumers Interest in Mobile Payment Products Grows - Company Secures Deal with Major Airline to Display Advertisements in Flight for its Next Generation Smart Wallet
4. Wyss Institutes technology translation engine launches Organs-on-Chips company
5. Consumer Needs for Identity Theft Security Grows with Popularity of Latest Smart Technology Products - Biometrically Secure Digital Wallet to Replace Credit Card Dependency
6. Global Next Generation Biometric Market by Technology, Function, Application & by Geography - Forecasts & Analysis to 2020
7. Rutgers chemists develop technology to produce clean-burning hydrogen fuel
8. International Biometrics Technology Market - Industry Analysis Size Share Growth Trends and Forecast to 2019
9. New technology reveals insights into mechanisms underlying amyloid diseases
10. CNIO scientists develop technology to redirect proteins towards specific areas of the genome
11. Nanotechnology for a sustainable future, new book offers insights
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... UBM,s Advanced Design and Manufacturing event in ... and evolving technology through its 3D Printing and Smart ... the expo portion of the event and feature a ... on trending topics within 3D printing and smart manufacturing. ... will take place June 13-15, 2017 at the Jacob K. ...
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... The Blavatnik Family Foundation and ... Finalists of the 2017 Blavatnik Regional Awards for Young Scientists. Established in ... by the New York Academy of Sciences to honor the excellence of outstanding ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... pathology, announced today it will be hosting a Webinar titled, “Pathology is going ... Pathology Associates , on digital pathology adoption best practices and how Proscia improves ...
(Date:10/11/2017)... Tampa Bay, Florida (PRWEB) , ... October 11, ... ... Food and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its ... antibody (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the ...
Breaking Biology Technology: