Navigation Links
New technique allows targeted inactivation of genes in research model

WORCESTER, Mass. Researchers at the University of Massachusetts Medical School (UMMS) report today on a new technique that improves the ability of scientists to target individual genes for inactivationa technique with broad potential implications for both basic science research and human disease. Two scientific teams at UMMS, one led by Scot A. Wolfe, PhD, an assistant professor in the Program in Gene Function & Expression and the Department of Biochemistry & Molecular Pharmacology, and the other by Nathan D. Lawson, PhD, an associate professor in the Program in Gene Function and Expression and the Program in Molecular Medicine, working with a small fishthe zebrafishcommonly used as a model organism in biomedical research, developed a method to create and deliver a tailor-made restriction enzyme that inactivates a specific gene in a zebrafish embryo.

The paper, Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases appears as an Advance Online Publication of the journal Nature Biotechnology (25 May, 2008; ), and was supported by grants from the National Heart, Lung and Blood Institute and the National Institute of General Medical Sciences.

The best way to figure out what a gene does in an organism is to replace it with a non-functional version, breed the individual, and then look at the offspring to see whats wrong with them, said Laurie Tompkins, Ph.D., who oversees genetic mechanisms grants at the National Institute of General Medical Sciences, The problem is that its hard to swap in non-functional genes that are inherited by the offspring. These investigators have devised a way to do this, which will enable many scientists to answer questions that were previously out of reach.

We believe that this work will fundamentally change how researchers make knockoutsresearch organisms in which one or more genes have been genetically engineered to be turned offin many model organisms, said Dr. Wolfe. In this paper, we demonstrate the feasibility of this approach for gene inactivation using the zebrafish, but we believe that this technology should be applicable to other vertebrate and non-vertebrate systems with exciting implications for the development of new models for the study of human disease.

The collaboration between the Lawson and Wolfe laboratories merges the strengths of two different research programs to achieve important advances at the interface of their interests: the Wolfe laboratorys focus on understanding and engineering protein-DNA recognition in zinc finger proteins and the Lawson laboratorys interest in developing new technologies that facilitate biological studies in zebrafish to better understand development and disease.

The zebrafish has really become quite established as a model organism in the past several years, said Dr. Lawson. I began using the zebrafish model to study angiogenesis because of its external development and transparent embryos we can actually watch blood vessels as they grow in the zebrafish embryo. This allows us to gain novel insights into this process that are not easy to make in mouse models. However, we had not previously been able to directly knock out a gene of interest, an approach available in the mouse. The work we have done with the Wolfe lab will open up completely new avenues for our own research and will further strengthen the use of the zebrafish model. More significantly, this technique will now allow us to make zebrafish models that may provide insight into the progression of human vascular disease.


Contact: Office of Public Affairs
University of Massachusetts Medical School

Related biology news :

1. New technique can be breakthrough for early cancer diagnosis
2. University of Leicester scientists discover technique to help friendly bacteria
3. New technique reveals subtle force-induced changes in biomolecules conformation
4. New magnetic separation technique might detect multiple pathogens at once
5. New technique captures chemical reactions in a single living cell at unprecedented resolution
6. Software Techniques Inc. Selects M2SYS Fingerprint Software to Meet Continuous Growth and Demand for Desktop Biometric Time & Attendance Solutions
7. New X-ray technique targets terrorists and tumors
8. Technique controls nanoparticle size, makes large numbers
9. New technique could dramatically lower costs of DNA sequencing
10. New techniques create butanol
11. New radar satellite technique sheds light on ocean current dynamics
Post Your Comments:
(Date:5/24/2016)... superior patient care by providing unparalleled technology to leaders of the medical imaging industry. ... recently added to the range of products distributed by Ampronix. Photo - ... ... ... ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and ... clinical trial team. , Using the CONSULT module, patients and physicians can schedule a ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks ... to industrial engineering, was today awarded as one ... selection of the world,s most innovative companies. Ginkgo ... scale for the real world in the nutrition, ... engineers work directly with customers including Fortune 500 ...
(Date:6/24/2016)... , ... June 24, 2016 , ... Researchers at the ... commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the subject ... it now. , Diagnostic biomarkers are signposts in the blood, lung fluid or ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
Breaking Biology Technology: