Navigation Links
New technique allows simulation of noncrystalline materials
Date:6/22/2012

CAMBRIDGE, Mass. -- A multidisciplinary team of researchers at MIT and in Spain has found a new mathematical approach to simulating the electronic behavior of noncrystalline materials, which may eventually play an important part in new devices including solar cells, organic LED lights and printable, flexible electronic circuits.

The new method uses a mathematical technique that has not previously been applied in physics or chemistry. Even though the method uses approximations rather than exact solutions, the resulting predictions turn out to match the actual electronic properties of noncrystalline materials with great precision, the researchers say. The research is being reported in the journal Physical Review Letters, published June 29.

Jiahao Chen, a postdoc in MIT's Department of Chemistry and lead author of the report, says that finding this novel approach to simulating the electronic properties of "disordered materials" those that lack an orderly crystal structure involved a team of physicists, chemists, mathematicians at MIT and a computer scientist at the Universidad Autnoma de Madrid. The work was funded by a grant from the National Science Foundation aimed specifically at fostering interdisciplinary research.

The project used a mathematical concept known as free probability applied to random matrices previously considered an abstraction with no known real-world applications that the team found could be used as a step toward solving difficult problems in physics and chemistry. "Random-matrix theory allows us to understand how disorder in a material affects its electrical properties," Chen says.

Typically, figuring out the electronic properties of materials from first principles requires calculating certain properties of matrices arrays of numbers arranged in columns and rows. The numbers in the matrix represent the energies of electrons and the interactions between electrons, which arise from the way molecules are arranged in the material.

To determine how physical changes, such as shifting temperatures or adding impurities, will affect such materials would normally require varying each number in the matrix, and then calculating how this changes the properties of the matrix. With disordered materials, where the values of the numbers in the matrix are not precisely known to begin with, this is a very difficult mathematical problem to solve. But, Chen explains, "Random-matrix theory gives a way to short-circuit all that," using a probability distribution instead of deriving all the precise values.

The new method makes it possible to translate basic information about the amount of disorder in the molecular structure of a material that is, just how messy its molecules are into a prediction of its electrical properties.

"There is a lot of interest in how organic semiconductors can be used to make solar cells" as a possible lower-cost alternative to silicon solar cells, Chen says. In some types of these devices, "all the molecules, instead of being perfectly ordered, are all jumbled up." These disordered materials are very difficult to model mathematically, but this new method could be a useful step in that direction, he says.

Essentially, what the method developed by Chen and his colleagues does is take a matrix problem that is too complex to solve easily by traditional mathematical methods and "approximates it with a combination of two matrices whose properties can be calculated easily," thus sidestepping the complex calculations that would be required to solve the original problem, he explains.

Amazingly, the researchers found that their method, although it yields an approximation instead of the real solution, turns out to be highly accurate. When the approximation is plotted on a graph along with the exact solution, "you couldn't tell the difference with the naked eye," Chen says.

While mathematicians have used such methods in the abstract, "to our knowledge, this is the first application of this theory to chemistry," Chen says. "It's been very much in the domain of pure math, but we're starting to find real applications. It's exciting for the mathematicians as well."

The incredible accuracy of the method, which uses a technique called free convolution, led the team to investigate why it was so accurate, which has led in turn to new mathematical discoveries in free probability theory. The method derived for estimating the amount of deviation between the precise calculation and the approximation is new, Chen says, "driven by our questions" for the mathematicians on the team. "It's a happy accident that it worked out as well as it did," he adds.

"Our results are a promising first step toward highly accurate solutions of much more sophisticated models," Chen says. Ultimately, an extension of such methods could lead to "reducing the overall cost of computational modeling of next-generation solar materials and devices."


'/>"/>
Contact: Caroline McCall
cmccall5@mit.edu
Massachusetts Institute of Technology
Source:Eurekalert

Related biology news :

1. Evaluation of microscopy techniques may help scientists to better understand ancient plants
2. New stem cell technique promises abundance of key heart cells
3. New screening technique yields elusive compounds to block immune-regulating enzyme
4. Its a trap! New laboratory technique captures microRNA targets
5. New rearing system may aid sterile insect technique against mosquitoes
6. Scientists develop new technique that could improve heart attack prediction
7. Early detection techniques offer hope for improved outcomes in lung cancer patients
8. New genetic bar code technique establishes ability to derive DNA information from RNA
9. New synthetic biology technique boosts microbial production of diesel fuel
10. A new application allows online statistical analysis of gene-expression data
11. Computer simulations help explain why HIV cure remains elusive
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... ... May 04, 2016 , ... PBI-Gordon Corporation is pleased to announce Doug ... Doug began his career at PBI-Gordon in February 1988, after finishing his masters in ... roles, ranging from customer service to national product manager, to helping develop, name and ...
(Date:5/3/2016)... ... May 03, 2016 , ... Leading CEOs ... on May 31st and June 1st at The Four Seasons Hotel Boston. , ... the life sciences, offering exclusive access to key decision makers who influence deal ...
(Date:5/3/2016)... , May 3, 2016  Dr. Thomas P. ... in The Woodlands, Texas , now ... percent of treated fat cells in just 25-minutes, leaving ... to 90 percent of Americans report feeling bothered by ... fat reduction procedures are a growing industry. This innovative ...
(Date:5/2/2016)... Sunnyvale, CA (PRWEB) , ... May 02, 2016 , ... ... visualization solutions today announced the addition of three Secure Remote Desktop modules to its ... the remote desktops from Linux and Unix servers to the user’s PC over encrypted ...
Breaking Biology Technology: