Navigation Links
New study supports Darwin's hypothesis on competition between species
Date:6/13/2011

A new study provides support for Darwin's hypothesis that the struggle for existence is stronger between more closely related species than those distantly related. While ecologists generally accept the premise, this new study contains the strongest direct experimental evidence yet to support its validity.

"We found that species extinction occurred more frequently and more rapidly between species of microorganisms that were more closely related, providing strong support for Darwin's theory, which we call the phylogenetic limiting similarity hypothesis," said Lin Jiang, an assistant professor in the School of Biology at Georgia Tech.

The study was published online on June 14, 2011 in the journal Ecology Letters. The work was supported by the National Science Foundation.

Jiang and his team -- Cyrille Violle, formerly a postdoctoral fellow at Georgia Tech currently at the Centre d'Ecologie Fonctionnelle et Evolutive in Montpellier, France, and Georgia Tech biology graduate student Zhichao Pu -- conducted experiments with 10 common ciliated protist species in artificial, simplified ecosystems called microcosms. Diana Nemergut, an assistant professor in the Institute of Arctic and Alpine Research and the Environmental Studies Program at the University of Colorado at Boulder, helped the team generate a family tree of the 10 microorganisms to determine how closely related the species were.

"We selected bacterivorous ciliated protist microorganisms for this study because they rapidly reproduce, allowing us to examine species co-existence over multiple generations in a closed system during a period of a few weeks, which wouldn't be possible if we were testing the hypothesis with plants or animals," said Jiang.

The researchers set up 165 microcosms that contained either an individual protist species or a pairing of two species, along with three types of bacteria for the organisms to eat. They collected weekly samples from each microcosm and examined them under a microscope, recording the presence or absence of species. After 10 weeks, the researchers estimated the density of the protist species in each microcosm.

The study results showed that all species survived until the end of the experiment when alone in a microcosm. However, in more than half of the experiments in which protists were paired together, one of the two species dominated, leading to the extinction of the other species.

The researchers found that the frequency and speed of this extinction process -- called competitive exclusion -- was significantly greater between species that were more closely related. In addition, in microcosms where both competitors coexisted for the duration of the experiment, the abundance of the inferior competitor was reduced more as the phylogenetic relatedness between the two competitors increased.

The study also showed that the frequency of competitive exclusion was significantly greater between species that had similar mouth sizes.

"We documented the mouth size of each species because there is some evidence that this morphological trait affects the selectivity and uptake rate of prey particles, and we thought that similarity in mouth size might translate into the exploitation of similar bacterial resources and result in competitive exclusion," said Jiang.

While they found that phylogenetic relatedness predicted the likelihood of coexistence better than mouth size, the results suggest that other traits involved in resource uptake may also be important predictors of the outcomes of competitive interactions in ecological communities.

"This study is one step toward a better understanding of how phylogenetic relatedness influences species interactions," said Jiang. "We hope our experimental validation of the phylogenetic limiting similarity hypothesis in microorganisms will encourage other ecologists to conduct additional studies with other types of organisms to further validate Darwin's hypothesis."

The phylogenetic limiting similarity hypothesis is just one of the many ideas Darwin published in his 1859 book called "The Origin of Species." In this book, Darwin introduced his scientific theory that populations evolve over the course of generations through a process of natural selection. The book presented a body of evidence that the diversity of life arose by common descent through a branching pattern of evolution.


'/>"/>

Contact: Abby Robinson
abby@innovate.gatech.edu
404-385-3364
Georgia Institute of Technology Research News
Source:Eurekalert  

Related biology news :

1. Social scientists study impact of human adult stem cell research
2. Scripps Research scientist wins $1.9 million grant to study malaria
3. Mountain pine beetle activity may impact snow accumulation and melt, says CU-Boulder study
4. Study finds widespread stream biodiversity declines at low levels of urban development
5. Environmental engineering students and faculty study Passaic River pollution
6. Finnish twin study yields new information on how fat cells cope with obesity
7. Smithsonian study: Stranding records are faithful reflection of live whale and dolphin populations
8. Pregnant women can prevent excess weight gain with simple steps, study finds
9. University of Arizona awarded $2.95 million to study monsoon ecology
10. Wayne State to study the role of vitamin D in African-Americans with high blood pressure
11. Study reveals how high-fat diet during pregnancy increases risk of stillbirth
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New study supports Darwin's hypothesis on competition between species
(Date:5/16/2017)... , May 16, 2017   Bridge Patient ... organizations, and MD EMR Systems , an ... partner for GE, have established a partnership to ... product and the GE Centricity™ products, including Centricity ... These new integrations will allow ...
(Date:4/18/2017)... -- Socionext Inc., a global expert in SoC-based imaging and computing solutions, ... which features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ... will be showcased during the upcoming Medtec Japan at Tokyo Big ... Las Vegas Convention Center April 24-27. ... Click here for an image of ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and recently ... have entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. ... for gene editing across all applications. , Under the terms of the agreement, ...
(Date:10/12/2017)... ... ... AMRI, a global contract research, development and manufacturing organization ... quality of life, will now be offering its impurity solutions as a stand-alone ... for all new drug products, including the finalization of ICH M7 earlier this ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
Breaking Biology Technology: