Navigation Links
New study offers hope for halting incurable citrus disease

The devastating disease Huonglongbing, or citrus greening, looms darkly over the United States, threatening to wipe out the nation's citrus industry, whose fresh fruit alone was valued at more than $3.4 billion in 2012.

Recently, however, a research team led by a University of California, Davis, plant scientist used DNA sequencing technologies to paint a broad picture of how citrus greening impacts trees before they even show signs of infection, offering hope for developing diagnostic tests and treatments for the currently incurable disease.

"Florida is seemingly in the death grip of citrus greening, and many experts believe it is just a matter of time before the disease appears full force in California," said plant molecular biologist Abhaya Dandekar, lead author on the study.

The new findings indicate that the bacterial disease interferes with starch and sugar metabolism in young and matures leaves and fruit, while also wreaking havoc with hormonal networks that are key to the trees' ability to fend of infections. Study results will be reported Sept. 25 in the journal PLOS ONE.

"Because the disease has a long latent phase during which there are no symptoms of infection and the bacteria are resistant to being grown in the laboratory, the only option for halting transmission of citrus greening has been to apply chemical pesticides to control the insect that spreads the bacteria," Dandekar said.

About citrus greening:

HLB, or citrus greening, is the most destructive citrus disease worldwide. It is caused by three species of the Candidatus Liberibacter bacteria, including Candidatus Liberibacter asiaticus, which is known by the acronym CaLas. These bacteria are carried from tree to tree by two species of the citrus psyllid, a winged insect that is about one-eighth inch long and attaches itself to the underside of the trees' leaves.

As the citrus psyllid feeds on a leaf, it can pick up the bacteria from a diseased tree and introduce the bacteria to a non-infected tree. These disease-causing bacteria reside in the tree's phloem the vascular tissue that carries vital nutrients throughout the tree.

The disease affects most citrus species, causing yellowing of shoots, blotchy and mottled leaves, lopsided and poorly colored fruit and loss of viable seeds. The fruit of diseased trees is hard, misshapen and bitter, and the infected trees die within a few years.

Other than one infected backyard tree found in 2012 in the Southern California community of Hacienda Heights, the disease has not been detected in California. However the citrus psyllid that transmits the bacteria was first found in California in 2008 and has since been identified in San Diego, Imperial, Riverside, San Bernardino, Orange, Los Angeles, Ventura, Santa Barbara, Kern and Tulare counties, resulting in quarantines and restricted areas.

The new study:

In this new study, the researchers studied four categories of healthy and diseased citrus trees, with the goal of better understanding how HLB affects trees physiologically during the very early stages of infection.

"Earlier sequencing of the CaLas bacteria genome showed that there were no toxins or enzymes that would destroy plant cell walls, or specialized secretion systems associated with citrus HLB," Dandekar said.

"Because these factors, which normally accompany plant diseases, were not present, we suspected that the disease was causing metabolic imbalances or interfering with nutrient transport in the infected trees," he said.

The researchers used gene sequencing technology to study the "transcriptome," which is the collection of RNA found in the tree leaves and fruit.

Their analysis confirmed that in infected trees, HLB disease caused starch to accumulate in the leaves, blocking nutrient transport through the phloem and decreasing photosynthesis. They also found that normal metabolism of sucrose, a sugar also key to photosynthesis, was disrupted.

Furthermore, the researchers discovered that HLB interfered with the regulation of hormones such as salicylic acid, jasmonic acid and ethylene, which are "the backbone" of the plant innate immune response. And they found that infected trees also had changes in the metabolism of important amino acids that serve as a reservoir for organic nitrogen in many plants. The nitrogen is required to stimulate the plant immune response.

Cause for hope:

The researchers anticipate that these discoveries will lead the way to new tests for detecting the bacteria and thus the presence of HLB in orchard trees.

They also suggest that it may be possible to develop several short-term treatments for infected trees. Such therapeutic procedures might rely on using hormones and other small molecules to restore the infected tree's normal metabolism or boosting the tree's innate immune response to effectively fight the infection.


Contact: Pat Bailey
University of California - Davis

Related biology news :

1. Global study reveals new hotspots of fish biodiversity
2. Family Resiliency Center helps study how food-bank clients afford basic non-food items
3. New CU-Boulder-led study finds microbial clock may help determine time of death
4. New study shows how ICU ventilation may trigger mental decline
5. Study confirms that rare mutations increase risk of late-onset Alzheimers disease
6. Reassuring findings released in national study of influenza vaccine safety in pregnancy
7. University of Maryland researchers studying vaccine to prevent potential bird flu pandemic
8. WUSTL engineer using Jello to study waves in brain from traumatic impact
9. Study helps bring genomes dark matter into light
10. Study finds that a subset of children often considered to have autism may be misdiagnosed
11. New muscular dystrophy treatment shows promise in early study led by Childrens National
Post Your Comments:
(Date:11/17/2015)... -- Vigilant Solutions announces today that Mr. Dick W. ... --> --> Mr. Boyce ... at TPG Capital, one of the largest global investment ... revenue.  He founded and led TPG,s Operating Group, which ... 1997 to 2013.  In his first role, he served ...
(Date:11/16/2015)... Calif. , Nov 16, 2015  Synaptics ... of human interface solutions, today announced expansion of ... TouchView ™ touch controller and display driver ... revolution of smartphones. These new TDDI products add ... TD4100 (HD resolution), TD4302 (WQHD resolution), and TD4322 ...
(Date:11/12/2015)... 12, 2015  Arxspan has entered into an ... Harvard for use of its ArxLab cloud-based suite ... The partnership will support the institute,s efforts to ... research information internally and with external collaborators. The ... managing the Institute,s electronic laboratory notebook, compound and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... PHILADELPIA, PA (PRWEB) , ... November 24, 2015 , ... ... young entrepreneurs at competitive events in five states to develop and pitch their BIG ... student projects from each state are competing for votes to win the title of ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) ... participate in the Piper Jaffray 27 th Annual Healthcare Conference ... December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ... Chief Financial Officer, will participate in the Piper Jaffray 27 th ... , NY on Tuesday, December 1, 2015, at 8:30 a.m. EST ...
(Date:11/24/2015)... , Nov. 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced ... 29, 2015 at 11:00 a.m. Israel time, at ... 98 Yigal Allon Street, 36 th Floor, Tel Aviv, ... Eric Paneth and Izhak Tamir to the Board of ... as external directors; , approval of an amendment to certain terms ...
(Date:11/24/2015)... SAN FRANCISCO , Nov. 24, 2015 /PRNewswire/ ... today announced that Emily Leproust, Ph.D., Twist Bioscience ... Piper Jaffray Healthcare Conference on December 1, 2015 ... Palace Hotel in New York City. ... . Twist Bioscience is on ...
Breaking Biology Technology: