Navigation Links
New study helps predict impact of ocean acidification on shellfish
Date:8/5/2012

An international study to understand and predict the likely impact of ocean acidification on shellfish and other marine organisms living in seas from the tropics to the poles is published this week (date) in the journal Global Change Biology.

Ocean acidification is occurring because some of the increased carbon dioxide humans are adding to the atmosphere dissolves in the ocean and reacts with water to produce an acid.

The results suggest that increased acidity is affecting the size and weight of shells and skeletons, and the trend is widespread across marine species. These animals are an important food source for marine predators such as tropical seabirds and seals as well as being a valuable ingredient in human food production. Consequently, these changes are likely to affect humans and the ocean's large animals.

UK scientists from the British Antarctic Survey (BAS) and the National Oceanography Centre (NOC), together with colleagues from Australia's James Cook and Melbourne Universities and the National University of Singapore, investigated the natural variation in shell thickness and skeletal size in four types of marine creatures living in 12 different environments from the tropics to the Polar Regions. Their aim was to get a clearer understanding of similarities and differences between species, and to make better predictions of how these animals might respond to increasing acidity in the oceans.

The effort required by clams, sea snails and other shellfish to extract calcium carbonate from seawater to build their shells and skeletons varies from place to place in the world's oceans. A number of factors, including temperature and pressure, affect the availability of calcium carbonate for species that produce carbonate skeletons.

There is already evidence that ocean acidification is affecting the ability of some marine species to grow, especially during their early life stages, and there is mounting concern about whether or not these species can evolve or adapt to cope with increases in acidity in the coming decades.

This study shows, over evolutionary time, animals have adapted to living in environments where calcium carbonate is relatively difficult to obtain by forming lighter skeletons. Carbon dioxide from fossil fuel combustion is altering seawater chemistry in the same way, in a process called ocean acidification and this is making it harder for marine animals to make shells and skeletons.

The four different types of marine animals examined were clams, sea snails, lampshells and sea urchins. Scientists found that as the availability of calcium carbonate decreases skeletons get lighter and account for a smaller part of the animal's weight. The fact that same effect occurs consistently in all four types suggests the effect is widespread across marine species, and that increasing ocean acidification will progressively reduce the availability of calcium carbonate.

Professor Lloyd Peck of British Antarctic Survey said,

"This effect is strongest at low temperatures and the results showed polar species to have the smallest and lightest skeleton, suggesting that they may be more at risk in the coming decades as the oceans change. Interestingly, where ecology requires animals to have strong skeletons - for instance to protect them from impacts from floating ice in Antarctica - skeletons are made thicker and stronger. However, they still form a smaller part of the animal's body mass, because the shape of the species changes to enclose much more body for a given amount of skeleton. Thus life finds a way, but still follows the overall trends of decreasing skeleton size in areas where the ocean chemistry makes it more difficult to obtain the necessary building blocks. If there is time for species to evolve in temperate and tropical regions it is one way they may be able to overcome some of the future effects of ocean acidification."

Dr Sue-Ann Watson, formerly of the University of Southampton and British Antarctic Survey (now at James Cook University) said,

"In areas of the world's oceans where it is hardest for marine creatures to make their limestone shell or skeleton, shellfish and other animals have adapted to natural environments where seawater chemistry makes shell-building materials difficult to obtain. Evolution has allowed shellfish to exist in these areas and, given enough time and a slow enough rate of change, evolution may again help these animals survive in our acidifying oceans."


'/>"/>

Contact: Athena Dinar
amdi@bas.ac.uk
44-012-232-21414
British Antarctic Survey
Source:Eurekalert

Related biology news :

1. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
2. Study shows how elephants produce their deep voices
3. Bacteria-immune system fight can lead to chronic diseases, study suggests
4. Study finds healthy seafood comes from sustainable fish
5. New study: Running mechanics, not metabolism, are the key to performance for elite sprinters
6. Cut emissions further or face risks of high air pollution, study shows
7. Study of zebra fish mouth formation may speak to Fraser syndrome hearing loss
8. $5 million grant awarded to UC Riverside to study immortality
9. To know a tiger is at least to start tolerating them, study shows
10. BUSM study identifies receptors role in regulating obesity, type 2 diabetes
11. Study associates excess maternal iodine supplementation with congenital hypothyroidism in newborns
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... facilitates superior patient care by providing unparalleled technology to leaders of the medical imaging ... product recently added to the range of products distributed by Ampronix. Photo ... ... ... News ...
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
Breaking Biology News(10 mins):
(Date:5/20/2016)... ... 20, 2016 , ... The recent recall by Costco and Trader Joes of ... on May 12, 2016(1), demonstrates the need for faster and more cost effective bio-threat ... PathSensors, Inc. , PathSensor’s latest solution uses a biosensor technology called ...
(Date:5/19/2016)... 19, 2016 Regen ... PINK: RGBPP) announced today initiation of a preclinical ... blood based cancer immunotherapeutic product leveraging its NR2F6 ... described a generation of cord blood derived killer ... silencing.  The product in development will be a ...
(Date:5/18/2016)... ... May 18, 2016 , ... STACS DNA Inc., the sample tracking ... and report sexual assault kit processing to help them save time and reduce errors. ... for kits to be processed and victims informed of results. Due to a previous ...
(Date:5/17/2016)... ... 2016 , ... DryLet, LLC, a biotechnology company providing an ... be showcasing ManureMagicâ„¢ at booth V1061 at the World Pork Expo, June 8-10 ... last year and more recently made news as the results were released from ...
Breaking Biology Technology: