Navigation Links
New study: Running mechanics, not metabolism, are the key to performance for elite sprinters
Date:8/1/2012

Sprinters competing in the 2012 Olympics might assume their championship performance is the result of their fuel-efficient physiology.

But a new study disproves the classic scientific view that conserving energy maximizes performance in a sprinting event.

The study by biomechanics researchers Matthew W. Bundle at the University of Montana and Peter G. Weyand at Southern Methodist University, Dallas, demonstrates that metabolic economy is not an important factor for performance in events lasting 60 seconds or less.

In fact, just the opposite is true.

"That prevailing view is no longer viable," said Weyand. "Sprinters, if anything, are wasteful of energy. This is due to the biological trade-offs between faster muscle fibers that provide the large and rapid forces needed for sprinting, and slower muscle fibers that maximize metabolic economy."

Instead, the key to top-flight sprinting is to maximize how hard each foot hits the ground, which allows sprinters to translate musculoskeletal and ground reaction forces into swift motion, said Bundle.

"Saving energy is critically important for endurance, but not for sprinting, which our findings indicate is not energy-limited," Bundle said.

Metabolic energy available from sustainable, aerobic sources predominantly determines performance during endurance events by setting the intensity of the musculoskeletal performance that can be sustained throughout the effort, the study found.

For sprinters, Bundle and Weyand conclude the opposite is true.

"The intensity of the mechanical activity that the musculoskeletal system can (for a very short time) achieve determines the quantities of metabolic energy released and the level of performance attained," according to the study.

The authors reported their findings in "Sprint Exercise Performance: Does Metabolic Power Matter?" in the July issue of Exercise and Sport Sciences Reviews, http://bit.ly/ODvCrk.

Sprint performance variations are a function of external forces

The authors write in their study that athletic performance can be analyzed considering either the input to, or the output from, the skeletal muscles that serve as biological engines. Input is the chemical energy that fuels muscular contraction. Output is the force or mechanical power the contractions produce.

To analyze the mechanics of burst-type sprint activities, the authors said they drew on all-out running speeds and cycling power outputs of humans because of the abundance and quality of the data available and because the mechanical and metabolic contrasts between the two provide informative insights. The authors focused on durations of up to five minutes, particularly on efforts of less than a minute.

For both exercises, differences in sprinting performance were predominantly a function of the magnitude of the external forces applied because running contact lengths and cycling down-stroke lengths, as well as stride and pedal frequency, exhibited limited variations. Additionally, for both cycling and running, external forces applied during sprinting are believed to be consistently related to the corresponding muscle forces, regardless of the intensity or duration of the effort.

So what determines the maximum external forces the musculoskeletal system can apply during a brief, all-out sprint? And why do those forces decrease over the duration of the sprint?

The researchers assessed neuromuscular activation using a diagnostic procedure called surface electromyography to measure electrical activity in the activated muscle fibers. That assessment showed that neuromuscular activation increases continuously during all-out sprint cycling and running trials. More rapid increases were typical for the briefest trials that required the greatest forces. That indicates that all-out sprinting performances are highly dependent on duration because of the speed of musculoskeletal fatigue during dynamic exercise requiring large force outputs, the authors reported.

Sprint performance linked to mechanics of applying external force

Bundle and Weyand altered three independent variables to maximize the variation observed in sprint performance: Subjects were individuals with large differences in their sprint performance capabilities; all-out sprint trials spanned a broad range of durations from 2 to 300 seconds; and performance was compared across different modes of sprinting, namely cycling and running.

"The predictive success of our force application model, both within and across modes of sprint exercise, indicates that as efforts extend from a few seconds to a few minutes, the fractional reliance on anaerobic metabolism progressively impairs whole-body musculoskeletal performance, and does so with a rapid and remarkably consistent time course," the authors wrote. "In this respect, the sprint portion of the performance-duration curve predominantly represents, not a limit on the rates of energy re-supply, but the progressive impairment of skeletal muscle force production that results from a reliance on anaerobic metabolism to fuel intense, sequential contractions."

Conclusion of study departs from prevailing physiological paradigm

Since the muscular engines of humans and other animals are similar in terms of their metabolic and mechanical function, the findings likely apply to the burst performance capabilities of vertebrate animals in general, say the researchers.


'/>"/>
Contact: Margaret Allen
mallen@smu.edu
214-768-7664
Southern Methodist University
Source:Eurekalert

Related biology news :

1. New study: Raisins as effective as sports chews for fueling workouts
2. RIH study: Emergency patients prefer technology-based interventions for behavioral issues
3. Study: Wolverines need refrigerators
4. New study: Snacking on raisins significantly reduces overall post-meal blood sugar levels
5. Study: No-fat, low-fat dressings dont get most nutrients out of salads
6. Study: Seeping Arctic methane has serious implications for Florida coastline
7. Study: Seeking Arctic methane has serious implications for Florida coastline
8. Study: In-patient, out-patient stroke rehab might benefit from yoga
9. Army study: DNA vaccine and duck eggs protect against hantavirus disease
10. USF study: Common fungicide wreaks havoc on freshwater ecosystems
11. Study: Men who do load-bearing exercise in early 20s may be shielded from osteoporosis
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:4/14/2016)... Israel , April 14, 2016 ... Authentication and Malware Detection, today announced the appointment of ... assumed the new role. Goldwerger,s leadership appointment ... on the heels of the deployment of its platform ... BioCatch,s behavioral biometric technology, which discerns unique cognitive and ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
Breaking Biology Technology: