Navigation Links
New studies show spinal cord injury and ALS respond to cell transplantation
Date:7/19/2012

Tampa, Fla. (July. 18 , 2012) Two studies published in a recent issue of Cell Medicine [2(2)] report on the therapeutic efficacy of stem cell transplantation in animal models of amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI). Cell Medicine is freely available on-line at http://www.ingentaconnect.com/content/cog/cm.

Mensenchymal stem cell transplantation in spinal cord injured rats promotes functional recovery

Transplantation of mesenchymal stem cells (MSCs), multipotent stem cells with the ability to differentiate into a variety of cell types with renewal capacities, has been found to enhance laboratory animal function after induced spinal cord injury. However, the biological mechanism of the functional enhancement has not been clearly defined.

In an attempt to gain a clearer picture of the mechanism, a team of Korean researchers transplanted MSCs derived from human umbilical cord blood into the tail veins of laboratory rats immediately after spinal cord injury. The intravenous route was selected because the researchers felt that injection into the damaged site could further traumatize the injured spinal cord, although intravenously injected MSCs risk being eliminated by the host immune system.

"We found that MSCs express immunomodulatory effects during the acute phase following SCI," said study corresponding author Dr. Sung-Rae Cho of the Yonsei University College of Medicine in Seoul, Korea. "In our study, MSCs suppressed activated micoglia and inflammatory cytokines, increased anti-inflammatory cytokines and, consequently, promoted functional recovery in SCI rats." They reported "modest but significant improvement" in a number of functional test scores in the rats subjected to transplantation when compared with control group animals not subjected to cell transplantation. The researchers suggested that their study not only confirmed the established link between microglial activation and inflammatory cytokines, but also demonstrated that functional recovery might be attributed to immunomodulatory effects rather than cell replacement. They also recommended that autologous (self-donated) MSCs, rather than human-derived MSCs, should be used in subsequent studies to "suppress undesirable immune response."

Contact: Dr. Sung-Rae Cho, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea 120-752
Tel: +82 2 2228-3715 Fax: +82 2 363-2795 Email: srcho918@yuhs.ac

Citation: Seo, J. H.; Jang, I. K.; Kim, H.; Yang, M. S.; Lee, J. E.; Kim, H. E.; Eom, Y-W.; Lee, D-H.; Yu, J. H.; Kim, J. Y.; Kim, H. O.; Cho, S-R. Early immunomodulation by intravenously transplanted mesenchymal stem cells promotes functional recovery in spinal cord injured rats. Cell Med. 2(2):55-67; 2011.

Bone marrow cell transplantation coupled with stimulating factor offers neuroprotective and angiogenic effects in ALS animal models

In this the first report showing the effects of bone marrow cell transplantation (BMT) combined with granulocyte colony-stimulating factor (GCSF) in mouse models of ALS, researchers from Okayama University, Japan demonstrated that the co-treatment potentially confers neuroprotective and angiogenic (blood vessel growth) effects on the test mice.

"Combined treatment with BMT and GCSF delayed disease progression and prolonged the survival of G93A mice while BMT or GCSF treatment alone did not," said corresponding author professor Koji Abe of the Department of Neurology in the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. "In addition, the mice treated with BMT and GCSF also showed a reduction in motor neuron loss, induced neuronal precursor cell proliferation, and the increased expression of several neurotrophic factors."

Since ALS is a progressive, fatal disease characterized by the loss of motor neurons, motor neuron preservation is critical. According to the researchers, the combination treatment of BMT and GCSF had a greater impact via significant neuroprotective and neuroregenerative effects than when compared to BMT alone.

GCSF was administered to not only provide a neuroprotective effect, but also to stimulate the proliferation of bone marrow cells," said Dr. Abe.

Contact: Prof. Koji Abe, Department of Neurology,
Graduate School of M, dentistry and Pharmaceutical Sciences,
Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
Tel: 81-86-235-7365 Fax: 81-86-235-7368 Email: yomdhot@hotmail.co.jp

Citation: Ohta, Y.; Nagai, M.; Miyazaki, K.; Tanaka, N.; Kawai, H.; Mimoto, T.; Morimoto, N.; Kurata, T.; Ikeda, Y.; Matsuura T.; Abe, K. Neuroprotective and Angiogenic Effects of Bone Marrow Transplantation Combined With Granulocyte Colony-Stimulating Factor in a Mouse Model of Amyotrophic Lateral Sclerosis. Cell Med. 2(2):69-83; 2011


'/>"/>

Contact: David Eve
cellmedicinect@gmail.com
Cell Transplantation Center of Excellence for Aging and Brain Repair
Source:Eurekalert

Related biology news :

1. FirstMark Scientific Board of Advisors Meet to Discuss New Clinical Studies for PREvent
2. Preclinical studies use specialized ultrasound to detect presence of cancer
3. GSA Bulletin presents studies in Antarctica, Italy, Mexico, Algeria, Mongolia, and more
4. 2 Cell Transplantation studies impact dental stem cell research for therapeutic purposes
5. Miniature Sandia sensors may advance climate studies
6. Improving equine health: Research studies vaccinations to protect newborn foals
7. Autism Speaks awards $1.1 million to fund high priority studies
8. Collaborative preclinical efficacy studies suggest a new target for drug addiction treatment
9. Studies reveal structure of EV71, a virus causing childhood illnesses
10. Neuroprotective dietary supplements for chronic spinal cord injury
11. Neural stem cell transplants for spinal cord injury maximized by combined, complimentary therapies
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/15/2016)... DUBLIN , Nov 15, 2016 Research ... - Global Forecast to 2021" report to their offering. ... ... reach USD 16.18 Billion by 2021 from USD 6.21 Billion in ... Growth of the bioinformatics market is driven by ...
(Date:6/27/2016)... Research and Markets has announced the addition of the ... The report forecasts the biometrics ... a CAGR of 12.28% during the period 2016-2020. ... with inputs from industry experts. The report covers the market landscape ... includes a discussion of the key vendors operating in this market. ...
(Date:6/22/2016)... , June 22, 2016 On Monday, the ... to industry to share solutions for the Biometric Exit ... Customs and Border Protection (CBP), explains that CBP intends ... departing the United States , in ... to defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
Breaking Biology News(10 mins):
(Date:12/8/2016)...  HedgePath Pharmaceuticals, Inc. (OTCQX: HPPI), a clinical ... to commercialize innovative therapeutics for patients with cancer, ... approved for trading on the OTCQX U.S. market. ... effective today, under the ticker symbol "HPPI." ... must meet high financial standards, follow best practice ...
(Date:12/8/2016)... , Dec. 8, 2016 Eutilex Co. ... billion KRW (US $18.9M) Series A financing. This financing ... G.N. Tech Venture and SNU Bio Angel. This new ... 30.5 billion KRW (US $27.7M) since its founding in ... to bolster the development and commercialization of its immuno-oncology ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selector™ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
(Date:12/7/2016)... ... 07, 2016 , ... A new study published in the ... treated, advanced pancreatic cancer, liquid biopsies are not yet an adequate substitute for ... blood sampling may improve the value of a blood-based test.” The study was ...
Breaking Biology Technology: