Navigation Links
New scanning strategy could help develop heart disease treatments
Date:12/12/2011

Patients with life-threatening heart valve disease could be helped with alternative scanning techniques that provide greater insight into the condition.

Researchers from the University of Edinburgh used an imaging technique that could help predict which patients will need open heart surgery to replace their heart valves, and improve treatments to prevent the disease.

The narrowing and hardening of the heart's aortic valve a common condition known as aortic stenosis affects 1 in 20 people over 65 in the UK and is on the increase due to an ageing population. The study, funded by the British Heart Foundation (BHF), trialled the use of positron emission tomography (PET) scans among patients with the condition.

The scans give a much clearer insight into the process that causes aortic stenosis than ultrasound scans, which are currently used for diagnosis. They involve using tracer chemicals, which highlight molecular changes within the body.

Dr Marc Dweck, of the University of Edinburgh's Clinical Research Imaging Centre, said: "Currently the only form of treatment is heart surgery which is not necessarily ideal as the majority of patients are over 65. These scans will help us better understand what is happening to the heart valves, and hopefully help us to halt the processes causing the narrowing. It may also allow us to predict which patients are likely to need an operation and when this might occur."

The scans showed that inflammation, possibly related to fatty deposits, was important in establishing the very early stages of the disease. However, after this initial trigger subsequent narrowing was instead mainly due to the build-up of calcium deposits in the valve.

The use of the PET scans mean that scientists can now analyse what is happening to heart valves earlier in the disease process, when treatments are more likely to be effective. The study has been published in the journal Circulation.

Dr Shannon Amoils, Research Advisor at the BHF, said: "Aortic stenosis is the most common reason for having a heart valve operation in the UK. It would be much better for patients if we could either prevent the condition or treat it with a drug at an early stage. But the fact is that there are currently no medicines for the condition, and no accurate way of predicting how quickly it will progress.

"We're delighted to have been able to fund this study, which has used state-of-the-art imaging technology to reveal clues about the biology underlying aortic stenosis and how it progresses. The researchers have shown that calcification, or 'hardening', of the aortic valve may be the most important process underlying its progressive narrowing. This could explain why attempts to treat patients by targeting the inflammation in the valve have not worked, and it offers hope that a change of strategy targeting the calcification process might prove more successful."


'/>"/>

Contact: Tara Womersley
tara.womersley@ed.ac.uk
44-131-650-9836
University of Edinburgh
Source:Eurekalert

Related biology news :

1. Frequent CT scanning for testicular cancer surveillance associated with secondary malignancies
2. Aware Software and Development Services Enable State-of-the-Art Fingerprint Card Scanning
3. Eureka! Air cargo scanning wins top prize
4. Federal Bureau of Investigation Awards Lockheed Martin Biometric Card Scanning Service Contract
5. Study on keeping nuclear bombs from US ports shows misplaced fear over cargo scanning cost
6. Federal Bureau of Investigation Awards Lockheed Martin Biometric Card Scanning Service Contract
7. identiMetrics & BIO-key(R) Provide Biometric Finger Scanning for School Food Service Nationwide
8. New strategy could lead to dose reduction in X-ray imaging
9. Rudolph the red-nosed reindeers cooling strategy revealed
10. Powerful antibody-based strategy suggests a new therapeutic approach to diabetes and obesity
11. BGI develops new strategy to uncover structural variations of human genomes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/21/2016)... 21, 2016   Neurotechnology , a provider ... today announced that the MegaMatcher On Card fingerprint ... for the NIST Minutiae Interoperability Exchange (MINEX) ... mandatory steps of the evaluation protocol. ... test of fingerprint templates used to establish compliance ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/16/2016)... SANTA CLARA, Calif. , Nov. 16, 2016 /PRNewswire/ ... company enhancing user experience and security for consumer ... provider for the financial and retail industry, today ... more secure and convenient way to authenticate users ... now uses Sensory,s TrulySecure™ software which ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... December 07, 2016 , ... Cambrian Innovation , ... facilities, today announced that one of the nation’s fastest growing craft breweries, ... purchase agreement (WEPA). Under the WEPA, a first for the industrial wastewater treatment ...
(Date:12/6/2016)... AUSTIN, Texas , Dec. 6, 2016 ... Naturopathica for its adoption of arnica ( Arnica ... provides support to ABC,s HerbMedPro database, ... to important scientific and clinical research data on ... 250 popular herbs. Naturopathica, a wellness ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... automation and IT solutions, today announced the company has successfully completed its 50th ... executed automation and control systems integration services to leading companies in life sciences, ...
(Date:12/6/2016)... , Dec. 6, 2016 Zimmer Biomet Holdings, ... announced the pricing terms of its previously-announced cash ... aggregate purchase price (excluding accrued and unpaid interest ... and excluding fees and expenses related to the ... securities identified in the table below (collectively, the ...
Breaking Biology Technology: