Navigation Links
New roles emerge for non-coding RNAs in directing embryonic development
Date:8/28/2011

Scientists at the Broad Institute of MIT and Harvard have discovered that a mysterious class of large RNAs plays a central role in embryonic development, contrary to the dogma that proteins alone are the master regulators of this process. The research, published online August 28 in the journal Nature, reveals that these RNAs orchestrate the fate of embryonic stem (ES) cells by keeping them in their fledgling state or directing them along the path to cell specialization.

Broad scientists discovered several years ago that the human and mouse genomes encode thousands of unusual RNAs termed large, intergenic non-coding RNAs (lincRNAs) but their role was almost entirely unknown. By studying more than 100 lincRNAs in ES cells, the researchers now show that these RNAs help regulate development by physically interacting with proteins to coordinate gene expression and suggest that lincRNAs may play similar roles in most cells.

"There's been a lot of debate about what lincRNAs are doing," said Eric Lander, director of the Broad Institute and the senior author of the paper. "It's now clear that they play critical roles in regulating developmental decisions that is, cell fate. This was a big surprise, because specific types of proteins have been thought to be the master controls of development."

"This is the first global study of lincRNAs," said Mitchell Guttman, first author of the paper and a graduate student at MIT and the Broad Institute. "We picked embryonic stem cells in particular because they are so important to development and so well understood. This allowed us to dissect the role of lincRNAs within the circuitry of a cell."

The researchers used genetic tools to inhibit more than 100 lincRNAs and found that the vast majority more than 90 percent had a significant impact on embryonic stem cells, indicating that the RNAs play a key role in the cells' circuitry.

Embryonic stem cells can follow one of two main routes. They can either differentiate, becoming cells of a specific lineage such as blood cells or neurons, or they can stay in a pluripotent state, duplicating themselves without losing the ability to become any cell in the body. When the researchers turned off each lincRNA in turn, they found dozens that suppress genes that are important only in specific kinds of cells. They also found dozens of lincRNAs that cause the stem cells to exit the pluripotent state.

"It's a balancing act," said Guttman. "To maintain the pluripotent state, you need to repress differentiation genes."

The researchers also uncovered a critical clue about how lincRNAs carry out their important job. Through biochemical analysis, they found that lincRNAs physically interact with key proteins involved in influencing cell fate to coordinate their responses.

"The lincRNAs appear to play an organizing role, acting as a scaffold to assemble a diverse group of proteins into functional units," said John Rinn, an author on the paper, an assistant professor at Harvard University and Medical School, and a senior associate member of the Broad Institute. "lincRNAs are like team captains, bringing together the right players to get a job done."

"By understanding how these interactions form, we may be able to engineer these RNAs to do what we want them to do," said Guttman. "This could make it possible to target key genes that are improperly regulated in disease."

Aviv Regev, an author on the paper, a core member of the Broad Institute, and associate professor at MIT, sees the team's approach to studying the lincRNAs as important for the field. "Many people are interested in lincRNAs, but they need a comprehensive view of the whole collection of lincRNAs," said Regev. "The large-scale data and technology from this study will be useful for scientists worldwide in studying both lincRNAs as well as many other RNAs in the cell."


'/>"/>

Contact: Haley Bridger
hbridger@broadinstitute.org
617-714-7968
Broad Institute of MIT and Harvard
Source:Eurekalert

Related biology news :

1. Its good to have a shady side: sun and shade leaves play different roles in tree canopies
2. Molecular muscle: Small parts of a big protein play key roles in building tissues
3. Key plant hormone and its roles in plant biology is focus of new book
4. Biotech, nanotech and synthetic biology roles in future food supply explored
5. Small RNAs can play critical roles in male infertility/contraception
6. Illuminating life: How RNA, after a century in the shadows, emerged into the spotlight
7. Landsat 5 satellite helps emergency managers fight largest fire in Arizona history
8. Species reemergence after collapse: Possible but different
9. Mathematical model explains how complex societies emerge, collapse
10. Researchers discover human immune system has emergency backup plan
11. Ancient forest emerges mummified from the Arctic
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/14/2016)... Israel , April 14, 2016 ... Authentication and Malware Detection, today announced the appointment of ... assumed the new role. Goldwerger,s leadership appointment ... on the heels of the deployment of its platform ... BioCatch,s behavioral biometric technology, which discerns unique cognitive and ...
(Date:3/31/2016)... 31, 2016  Genomics firm Nabsys has completed a ... Barrett Bready , M.D., who returned to the company ... technical leadership team, including Chief Technology Officer, John ... Steve Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Ginkgo Bioworks , a leading organism design company ... as one of the World Economic Forum,s Technology ... companies. Ginkgo Bioworks is engineering biology to manufacture ... the nutrition, health and consumer goods sectors. The ... Fortune 500 companies to design microbes for their ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... 23, 2016 Houston Methodist Willowbrook Hospital ... Sports Association to serve as their official health ... Methodist Willowbrook will provide sponsorship support, athletic training ... association coaches, volunteers, athletes and families. ... Sports Association and to bring Houston Methodist quality ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network for ... Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is to ... are designed, built and brought to market. , The Design Lab is Supplyframe’s ...
Breaking Biology Technology: