Navigation Links
New research suggests bacteria are social microorganisms
Date:9/7/2012

New research from the Massachusetts Institute of Technology reveals that some unlikely subjects--bacteria--can have social structures similar to plants and animals.

The research shows that a few individuals in groups of closely related bacteria have the ability to produce chemical compounds that kill or slow the growth of other populations of bacteria in the environment, but not harm their own.

Published in the September 7 issue of the journal Science, the finding suggests that bacteria in the environment can play different social roles and that competition occurs not only among individual bacteria, but also among coexisting ecological populations.

The National Science Foundation, an independent federal agency that supports fundamental research and education across all fields of science and engineering, funded the research.

"Bacteria typically have been considered purely selfish organisms and bacterial populations as groups of clones," said Otto Cordero, a theoretical biologist and lead researcher on the paper. "This result contrasts with what we know about animal and plant populations, in which individuals can divide labors, perform different complementary roles and act synergistically."

Cordero and colleagues from MIT, along with researchers from the French Research Institute for Exploitation of the Sea and Woods Hole Oceanographic Institution in Massachusetts, studied whether population-level organization exists for bacteria in the wild.

They reasoned social structure can reduce conflict within populations of plants and animals and determine aggression towards competing biological populations. "Think of a population of lions in the Serengeti or a population of fish in a lake," said Cordero. But could the same be true for populations of bacteria?

"It is difficult to know what the environmental interactions really are, because microbes are too small for us to observe them in action," said Martin Polz, an organismic and evolutionary biologist at MIT and principal investigator for the Polz Microbial Ecology and Evolution Lab. "But our research provides strong evidence that antibiotics play a role in fending off competitors."

The researchers found evidence by looking at direct, aggressive competition between ecological populations of bacteria. They reconstructed a large network of bacterial fights--or antibiotic-mediated interactions--between bacteria from the ocean.

The scientists analyzed interactions called interference competitions, wherein bacteria produce antibiotics as a means of chemical warfare, to gain a competitive edge by directly hindering the survival of potential competitors.

This typically occurs when bacteria compete for the same portion of habitat.

The researchers assembled an all-against-all battleground for 185 closely-related, but distinct, members of an ocean-based family of bacteria called Vibrionaceae. They measured bacterial compounds produced by Vibrio isolates that directly antagonized other Vibrio isolates.

The framework provided Cordero and colleagues an opportunity to examine about 35,000 possible antibiotic-mediated interactions.

The researchers found that ecologically delineated bacterial populations act as socially cohesive units. "In these populations, a few individuals produced antibiotics to which closely related individuals in the population were resistant, whereas individuals in other populations were sensitive," said Cordero.

Thus, aggressive chemical reactions occur between, rather than within natural populations.

"It appears to be a group effort where individuals assume the role of antibiotic producers and hence defenders," said Polz. "Of course, competing groups could also produce antibiotics. It's a potential arms race out there."

"Those individuals that don't produce antibiotics can benefit from association with the producers, because they are resistant," added Cordero. "In other words, antibiotics have a social effect, because they can benefit the population as a whole."

The findings may help scientists answer questions about the natural role of antibiotics in human contexts.

"The research has the potential to bridge gaps in our understanding of the relationships between plants and humans and their non-disease- and disease-causing bacterial flora," said Robert Fleischmann, a program director in the Division of Biological Infrastructure for the National Science Foundation.

"We use antibiotics to kill pathogenic microbes, which cause harm to humans and animals," said Polz. "As an unfortunate side effect, this has lead to the widespread buildup of resistance, particularly in hospitals where pathogens and humans encounter each other often."

In addition, the results help scientists make sense of why closely related bacteria are so diverse in their gene content. Part of the answer, they say, is that the diversity allows the bacteria to play different social roles.

Social differentiation, for example, could mitigate the negative effects of two species competing for the same limiting resource--food or habitat, for instance--and generate population level behavior that emerges from the interaction between close relatives.

"Microbiology builds on the study of pure cultures," said Cordero, "that is genotypes isolated from their population. Our work shows that we need to start focusing on population based phenomena to better understand what these organisms are doing in the wild."


'/>"/>

Contact: Bobbie Mixon
bmixon@nsf.gov
703-292-8485
National Science Foundation
Source:Eurekalert  

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Research reveals first evidence of hunting by prehistoric Ohioans
3. Diabetes Research Institute develops oxygen-generating biomaterial
4. APS issues new policy requiring identification of sex or gender in reporting scientific research
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
7. U of Alberta researcher steps closer to understand autoimmune diseases
8. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
9. A project to research biological and chemical aspects of microalgae to fuel approach
10. Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome
11. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New research suggests bacteria are social microorganisms
(Date:3/21/2016)... , March 22, 2016 ... recognition with passcodes for superior security   ... a leading provider of secure digital communications services, today ... biometric technology and offer enterprise customers, particularly those in ... facial recognition and voice authentication within a mobile app, ...
(Date:3/17/2016)... , March 17, 2016 ABI Research, ... forecasts the global biometrics market will reach more ... 118% increase from 2015. Consumer electronics, particularly smartphones, ... fingerprint sensors anticipated to reach two billion shipments ... Dimitrios Pavlakis , Research Analyst at ABI ...
(Date:3/15/2016)... , March 15, 2016 Yissum ... , the technology-transfer company of the Hebrew University, announced ... of remote sensing technology of various human biological indicators. ... raising $2.0 million from private investors. ... based on the detection of electromagnetic emissions from sweat ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... 2016 According to a ... "Separation Systems for Commercial Biotechnology Market - Global ... 2015 - 2023", the separation systems for commercial ... in 2014 and is projected to expand at ... to reach US$ 19,227.8 Mn in 2023. ...
(Date:4/29/2016)... -- Elekta is pleased to announce that ... treatment planning software, is available for clinical release. Real-world ... version 5.11 provides significant performance speed enhancements over prior ... four times faster than in previous versions of ... Monte Carlo algorithm, users can ...
(Date:4/28/2016)... ... April 28, 2016 , ... Next week on ... on its first-in-class technologies for tissue stem cell counting and expansion to gene-editing ... to Reprogramming & CRISPR-based Genome Engineering in Burlington, Massachusetts. , The attention of ...
(Date:4/27/2016)... ... April 27, 2016 , ... Shimadzu Scientific Instruments ... Spring 2016 Marijuana Business Conference and Expo. Shimadzu’s high-performance instruments enable laboratories to ... more. Expo attendees can stop by booth 1021 to learn how Shimadzu’s instruments ...
Breaking Biology Technology: