Navigation Links
New research on sauropod gigantism summarized in publicly available collection
Date:1/14/2014

Sauropods, the largest land animals in Earth's history, are still mightily puzzling the scientists. These plant-eating dinosaurs with their long necks and small heads could reach a height of 10 meters or more and dominated all other land vertebrates in terms of size. They could weigh up to 80 tons, more than any other known land vertebrate. One question that has been intensely debated is how these giants of the animal kingdom regulated their own body temperature. Dr. Eva Maria Griebeler of Johannes Gutenberg University Mainz has now shown that the hypothesis is inaccurate that their body size was limited only because the associated rise in body temperature could have resulted in potential overheating.

According to the calculations of the Mainz-based ecologist, the body temperature of these animals did not increase with body weight. Her estimates indicate that sauropods may have had an average body temperature of some 28 degrees Celsius. The upper limit for the body temperature that can be tolerated by vertebrate species living today is 45 degrees Celsius. The body temperatures that Griebeler postulates for the sauropods are thus well below those of today's endothermic vertebrates but consistent with those of ectothermic monitor lizards. Her calculations of sauropod body temperature take into account the relationship between the maximum rate of growth and the basal metabolic rate of an animal, whereby the latter is largely determined by body temperature.

Griebeler's work is part of a collection that brings together the results of recent research into sauropod gigantism. The gigantism of these vertebrates, unique in the history of the Earth, raises many questions, such as why no other land creatures have ever achieved this size and what their bauplan, physiology, and life cycle would have been like. The collection put together by the leading open access journal PLOS ONE consists of 14 contributions from the fields of ecology, morphology, animal nutrition, and paleontology that all address the fundamental question of how the sauropods managed to become so extraordinarily massive. "We are pleased that this new research is freely accessible not only to other scientists, but also to sauropod fans," said PD Dr. Eva Maria Griebeler. She and Dr. Jan Werner are members of the research group "Biology of the Sauropod Dinosaurs: The Evolution of Gigantism (FOR 533)," funded by the German Research Foundation (DFG). The collection was initiated as a result of a related international conference on this subject. Both scientists from the Ecology division at the Institute of Zoology at Mainz University have been working for more than six years within this research group. They have written three of the 14 contributions in the collection.

In one article, Jan Werner and his colleague Koen Stein of the University of Bonn describe a new method of determining the density of bone tissue and juxtapose sauropod data and results extrapolated for comparable endothermic mammals. Although the bone structure and the density of certain tissues of sauropods were similar to those of today's mammals, the results do not conclusively demonstrate that sauropods were also endothermic animals. Other functional aspects, such as similar weight-bearing stresses, could have resulted in the development of convergent forms of bone tissue.

Another article looks at the reproductive biology of sauropods. Here Werner and Griebeler discuss the hypothesis that a high rate of reproduction contributed to the gigantism of the large dinosaurs. They discovered that the reproductive pattern of most dinosaurs was similar to that of modern reptiles and birds. The reproductive pattern of theropods, i.e., ancestors of the modern birds, turned out to be comparable with that of birds, prosauropods, and sauropods rather than reptiles. However, contrary to the assumptions of previous studies, the calculations of the Mainz scientists did not corroborate the hypothesis that the large dinosaurs would have laid a particularly large number of eggs. In terms of total eggs produced annually, this number could not have exceeded 200 to 400 eggs for a sauropod weighing 75 tons. Today's large sea turtles are known to lay clutches in this range.


'/>"/>

Contact: Dr. Eva Maria Griebeler
em.griebeler@uni-mainz.de
49-613-139-26621
Johannes Gutenberg Universitaet Mainz
Source:Eurekalert

Related biology news :

1. Damon Runyon Cancer Research Foundation grants prestigious awards to 20 top young scientists
2. New discovery could stimulate plant growth and increase crop yields, researchers say
3. NPL links up with GlaxoSmithKline to support research into new medicines
4. White House lauds ONR-funded researchers for early success
5. Research uncovers key difference between our bodies fight against viruses and bacteria
6. KIT researchers develop artificial bone marrow
7. Researchers pursuing arthritis protein
8. LSUHSC research reveals structure of master regulator and new drug target for autism, cervical cancer
9. Researchers discover a tumor suppressor gene in a very aggressive lung cancer
10. Researchers unveil rich world of fish biofluorescence
11. Stem cell research identifies new gene targets in patients with Alzheimers disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/1/2017)... Massachusetts , February 1, 2017 IDTechEx ... events on emerging technology, announces the availability of a new report, ... Continue Reading ... ... in industrial and collaborative robots. Source: IDTechEx Report "Sensors for Robotics: ...
(Date:1/25/2017)... , Jan. 25, 2017 The Elements of ... (IAM) lifecycle is comprised of a comprehensive set ... purpose of maintaining digital identities and providing a ... applications. There are significant number of programs opted ... to time by optimizing processes and changing policies. ...
(Date:1/19/2017)... 19, 2017 According to a new report published by ... - 2022," the global biometric sensor market is expected to garner $1.5 billion ... 2015, Asia-Pacific dominated the global market and contributed over ... Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... Dublin - Research and Markets has announced ... Type, By Application, By End User, By Region, By Country: Opportunities ... ... is forecasted to grow at a CAGR of 11.33% during 2016-2021. ... protection market is driven by the surging demand for less toxic ...
(Date:2/22/2017)... ... February 22, 2017 , ... ... of Tom Perkins as European director. Operating from Pennside’s Zurich headquarters, Pennside Partners, ... , Perkins joins Pennside after more than a decade with leading market research ...
(Date:2/21/2017)... - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: SQD; OTCQX: ... months ended December 31, 2016. SQI is ... company that develops and commercializes proprietary technologies and products for ... ... milestones achieved in fiscal 2016," said Andrew Morris , ...
(Date:2/21/2017)... San Francisco, CA (PRWEB) , ... February 21, ... ... is pleased to announce that Dr. Trevor Heritage has joined its executive team ... a revolutionary system designed to provide insights to help improve the diagnosis and ...
Breaking Biology Technology: