Navigation Links
New research examines connection between inflammatory stimulus and Parkinson's disease
Date:4/23/2013

BOSTONParkinson's disease (PD) is a progressive degenerative disease affecting a person's ability to coordinate and control their muscle movement. What starts out as a tremor in a finger will eventually lead to difficulty in writing and speaking, and ultimately the inability to walk without assistance. Since the 1950s research has shown that people with Parkinson's have decreased levels of the chemical dopamine in their brains, which is involved in sending messages to the part of the brain that controls coordination and movement. Subsequent research has found that dopamine-generating cells, known as dopaminergic neurons, are also absent in a specific area of the brain in those with PD.

The precise cause or causes of PD is unknown, but there is a consensus that an inflammatory event or episode is involved in the initiation of neurodegeneration, and that chronic neuroinflammation is a sustaining and exacerbating reason for the loss of the dopaminergic neurons. A new study conducted by a team of Texas researchers brings the understanding of inflammation's role a step further. They have found that a single, high-dose exposure of an experimental inflammatory agent in an animal model causes changes in brain tissue that are similar to those associated with the development of the disease.

The study was conducted by Roger Bick and his colleagues Marie-Francoise Doursout, Michael S. Schurdell, Lauren M. Young, Uzondu Osuagwu, Diana M. Hook, Brian J. Poindexter, Mya C. Schiess, and Diane L. M. Bick, all at the University of Texas Health Science Center, Houston, Tex. Dr. Schiess will discuss the team's findings at the Experimental Biology 2013 meeting, being held April 20-24, 2013 at the Boston Convention and Exhibition Center, Boston, Mass.

The poster presentation is entitled, "Inflammatory cells and cytokines in the olfactory bulb of a rat model of neuroinflammation; Insights into neurodegeneration?" and is sponsored by the American Society for Investigative Pathology (ASIP), a co-sponsor of the meeting. The full study will appear this month in the online edition of the Journal of Interferon & Cytokine Research.

Methodology

In the study, the researchers examined inflammatory cell and cytokine production in brain tissue from a lipopolysaccharide (LPS)-treated rat model that mimics many of the neuropathologic changes associated with PD. Concurrently, they monitored the appearance of glial cell line-derived neurotrophic factor (GDNF), a neuronal protective agent, and circulating nitric oxide (NO) levels. They also examined the immune system associated cells in the olfactory bulb of the brain. It is known that Parkinson's starts with this mechanism.

Twelve male Sprague-Dawley rats were treated with intravenous LPS in saline, 12 control rats were treated with saline, and all were maintained for up to 48 hours before euthanasia and brain removal. Brains were removed from both groups at defined times, blood and other tests were conducted, and images of various sections of the brain, including the olfactory bulb, cortex and cerebellum, were taken using fluorescent microscopy.

Results and Conclusions

In general, the researchers found that a single injection of LPS elicited a systemic inflammatory response in the rats, as indicated by an elevation in certain circulatory cytokines. Tissue taken from the olfactory bulb showed the presence of immune associated cells. Individual cytokines within the olfactory bulb showed an increase in certain types of cytokines. Taken together, the complete analysis indicated that the single dose of LPS stimulated an inflammatory response that closely resembled the hallmarks of the development of the disease.

The results suggest an involvement of both the peripheral and the central nervous system immune components in response to inflammation and inflammatory episodes. As a result, the researchers suggest: (1) inflammation initiates an immune response; (2) the presence of continuing and increasing pro-inflammatory mechanisms results in a process whereby cellular protective mechanisms are overcome and the more susceptible cells, such as the dopaminergic neurons, enter into cell death pathways; and (3) this leads to a series of events that are a key part of the progression of PD.

Next Steps

Neuroinflammation is a significant problem for those with PD, and it persists throughout the course of this debilitating illness. Understanding of the essential processes behind it is the best pathway to finding therapeutic approaches to address it. This study highlights an opportunity to better understand the role inflammation plays in the process.


'/>"/>

Contact: Donna Krupa
dkrupa@the-aps.org
617-954-3976
Federation of American Societies for Experimental Biology
Source:Eurekalert

Related biology news :

1. Penn State Hass avocado research poster wins American Society For Nutrition Annual Awards
2. Large animal models of Huntingtons disease offer new and promising research options
3. New research constructs ant family tree
4. Researchers abuzz over caffeine as cancer-cell killer
5. An important discovery in breast cancer by IRCM researchers
6. UCLA researchers find nanodiamonds could improve effectiveness of breast cancer treatment
7. UNC Charlotte researcher leads effort to forecast optimal energy investments
8. Evolution Marketing Research Grows its Practice with Addition of Three Key Industry Professionals
9. Clues to heart disease in unexpected places, Temple researchers discover
10. New research helps place modern temperatures into a more complete statistical framework
11. University of Houston engineering researchers theories to be tested in space
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
(Date:10/11/2017)... Md. (PRWEB) , ... October 11, 2017 , ... ... digital pathology, announced today it will be hosting a Webinar titled, “Pathology is ... Advanced Pathology Associates , on digital pathology adoption best practices and how Proscia ...
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
(Date:10/10/2017)... International research firm Parks Associates announced today that Tom ... 2017 Annual Meeting , October 11 in Scottsdale, Arizona ... and how smart safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and ...
Breaking Biology Technology: