Navigation Links
New process yields high-energy-density, plant-based transportation fuel

MADISON A team of University of Wisconsin-Madison engineers has developed a highly efficient, environmentally friendly process that selectively converts gamma-valerolactone, a biomass derivative, into the chemical equivalent of jet fuel.

The simple process preserves about 95 percent of the energy from the original biomass, requires little hydrogen input, and captures carbon dioxide under high pressure for future beneficial use.

With James Dumesic, Steenbock Professor of Chemical and Biological Engineering at UW-Madison, postdoctoral researchers Jesse Bond and David Martin Alonso, and graduate students Dong Wang and Ryan West published details of the advance in the Feb. 26 edition of the journal Science.

Much of the Dumesic group's previous research of using cellulosic biomass for biofuels has focused on processes that convert abundant plant-based sugars into transportation fuels. However, in previously studied conversion methods, sugar molecules frequently degrade to form levulinic acid and formic acid two products the previous methods couldn't readily transform into high-energy liquid fuels.

The team's new method exploits sugar's tendency to degrade. "Instead of trying to fight the degradation, we started with levulinic acid and formic acid and tried to see what we could do using that as a platform," says Dumesic.

In the presence of metal catalysts, the two acids react to form gamma-valerolactone, or GVL, which now is manufactured in small quantities as an herbal food and perfume additive. Using laboratory-scale equipment and stable, inexpensive catalysts, Dumesic's group converts aqueous solutions of GVL into jet fuel. "It really is very simple," says Bond, of the two-step catalytic process. "We can pull off these two catalytic stages, as well as the requisite separation steps, in series, with basic equipment. With very minimal processing, we can produce a pure stream of jet-fuel-range alkenes and a fairly pure stream of carbon dioxide."

While biofuels such as ethanol are becoming more popular as blending agents in automobile fuels, they have limitations for use in jet fuel because of their low energy density. And, given present internal combustion engine designs, conventional biofuels cannot fully replace petroleum-derived hydrocarbons. "The hydrocarbons produced from GVL in this new process are chemically equivalent to those used in the present infrastructure," says Alonso. "The product we make is ready for the jet fuel application and can be added to existing hydrocarbon blends, as needed, to meet specs."

The biggest barrier to implementing the renewable fuel is the cost of GVL. Until now, says Dumesic, there has not been an incentive to mass-produce the compound. "The bottleneck in having the fuel ready for prime time is the availability of cost-effective GVL," he says.

Now that they have demonstrated the process for converting GVL to transportation fuel, Dumesic and his students are developing more efficient methods for making GVL from biomass sources such as wood, corn stover, switchgrass and others. "Once the GVL is made effectively, I think this is an excellent way to convert it to jet fuel," he says.


Contact: James Dumesic
University of Wisconsin-Madison

Related biology news :

1. Seeing the brain hear reveals surprises about how sound is processed
2. Wet ethanol production process yields more ethanol and more co-products
3. Carnegie Mellon researchers save electricity with low-power processors and flash memory
4. Company Granted Patent on Apparatus, Systems, and Methods for Gathering and Processing Wireless Biometric and Biomechanical Data
5. Laser processes promise better artificial joints, arterial stents
6. Powerful new molecular GPS helps probe aging and disease processes
7. Nostrils alternate to process competing odors
8. Brain innately separates living and non-living objects for processing
9. Hebrew U. researchers shed light on the brain mechanism responsible for processing of speech
10. Microfluidic palette may paint clearer picture of biological processes
11. International conference on CO2 sequestration processes
Post Your Comments:
(Date:11/17/2015)... Mass. , Nov. 17, 2015 Pressure ... leader in the development and sale of broadly enabling, ... worldwide life sciences industry, today announced it has received ... its $5 million Private Placement (the "Offering"), increasing the ... $4,025,000.  One or more additional closings are expected in ...
(Date:11/11/2015)... , Nov. 11, 2015   MedNet Solutions , ... spectrum of clinical research, is pleased to announce that it ... Clinical Trials (PCT) event, to be held November 17-19 ... able to view live demonstrations of iMedNet ... learn how iMedNet has been able to deliver ...
(Date:11/4/2015)... ALBANY, New York , November 4, 2015 /PRNewswire/ ... According to a new market report published by Transparency ... Size, Share, Growth, Trends and Forecast 2015 - 2022", ... value of US$ 30.3 bn by 2022. The market ... during the forecast period from 2015 to 2022. Rising ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... PHILADELPIA, PA (PRWEB) , ... November 24, 2015 , ... ... young entrepreneurs at competitive events in five states to develop and pitch their BIG ... student projects from each state are competing for votes to win the title of ...
(Date:11/24/2015)... , November 24, 2015 ... recent market research report released by Transparency Market Research, ... expand at a CAGR of 17.5% during the period ... Testing Market - Global Industry Analysis, Size, Volume, Share, ... global non-invasive prenatal testing market to reach a valuation ...
(Date:11/24/2015)... , Nov. 24, 2015  Twist Bioscience, ... that Emily Leproust, Ph.D., Twist Bioscience chief executive ... Healthcare Conference on December 1, 2015 at 3:10 ... in New York City. --> ... . Twist Bioscience is on Twitter. Sign ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list of ... OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up orthodontic ...
Breaking Biology Technology: