Navigation Links
New process derives 'green gasoline' from plant sugars
Date:9/19/2008

MADISON Alternative energy doesn't always mean solar or wind power. In fact, the alternative fuels developed by University of Wisconsin-Madison chemical and biological engineering professor James Dumesic look a lot like the gasoline and diesel fuel used in vehicles today.

That's because the new fuels are identical at the molecular level to their petroleum-based counterparts. The only difference is where they come from.

Funded by the National Science Foundation and the U.S. Department of Energy, Dumesic and his team have developed a process that creates transportation fuels from plant material. The paper, published in the Sept. 18 online version of the journal Science, explains how they convert sugar into molecules that can be efficiently "upgraded" into gasoline, diesel and jet fuel.

"Domestically, there are large amounts of lignocellulose available that are not being used effectively for energy," says Dumesic. "This work is a step along the way to making it practical to use biomass as fuel."

Lignocellulose refers to nonedible sources of biomass, which is biological material that can be converted into fuel. Instead of relying on corn as a source of energy, Dumesic notes that the goal of researchers in the field of "cellulosic ethanol" is to turn the carbohydrates, or sugars, from agricultural waste, corn stovers (leaves and stalks), switchgrass and forest residue into ethanol. Dumesic now suggests that instead of converting the water-soluble sugars derived from cellulose to ethanol, it may be better to convert these sugars to gasoline, diesel and jet fuels via this process.

Sugars are an attractive basis for fuel because they are abundant. Sugars comprise the largest portion of biomass, and the oil layer created by Dumesic retains 90 percent of the energy content in the original sugars.

The process of converting sugar into fuel begins by adding a solid catalyst to an aqueous solution, leading to the formation of an organic oil-like solution floating on top of the water. The oil layer, which is easily transportable, contains molecules of acids, alcohols, ketones and cyclics, which Dumesic calls "functional intermediates." These molecules are the precursors to fuel.

Unlike petroleum, plant sugars contain equal numbers of carbon and oxygen atoms, making it difficult to create high-octane or cetane fuels. The solution is to remove almost all the oxygen atoms, leaving only a few to keep the molecules reactive. The reactive molecules then can then be "upgraded" into different forms of fuel, and Dumesic's team has demonstrated three such upgrading processes.

"This is the same fuel we're currently using, just from a different source," says Dumesic. "It's not something that burns like it it is it."


'/>"/>

Contact: James Dumesic
dumesic@engr.wisc.edu
608-263-0288
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Thermochemical process converts poultry litter into bio-oil
2. New insight into the mechanisms of voltage sensing and transduction in biological processes
3. UCI researchers restore memory process in most common form of mental disability
4. ACT Ensures Integrity of Testing Process Through Deployment of BIO-keys(R) Biometric ID Technology
5. Engineered weathering process could mitigate global warming
6. Raydiance collaborates with Rutgers, MTF to develop innovative tissue processing approaches
7. Atmels Biometric Co-processor Solution Featured at AIS/CBX
8. It is important to demonstrate the influence of the microenvironment in the process of metastasis
9. Pourquié lab links beta-catenin gradient to process of somite formation
10. Food for thought: delivering the promise of food processing
11. New process makes nanofibers in complex shapes and unlimited lengths
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... June 2, 2016 Perimeter Surveillance ... Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... will generate revenues of $17.98 billion in 2016. ... Inc, a leader in software and hardware technologies for ...
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC , ... announced the opening of an IoT Center of Excellence ... and expand the development of embedded iris biometric applications. ... level of convenience and security with unmatched biometric accuracy, ... identity aside from DNA. EyeLock,s platform uses video technology ...
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 /PRNewswire/ ... product subsidiary of Infosys (NYSE: INFY ), and ... global partnership that will provide end customers with ... banking and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... area for financial services, but it also plays a fundamental ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator (YI) ... of the Class of 2016 were selected from a pool of 128 applicants ... the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is ... projects are designed, built and brought to market. , The Design Lab is ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
(Date:6/23/2016)... June 23, 2016 On Wednesday, June ... 4,833.32, down 0.22%; the Dow Jones Industrial Average edged 0.27% ... at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the ... Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. ... BIND ). Learn more about these stocks by ...
Breaking Biology Technology: