Navigation Links
New probes from Scripps research quantify folded and misfolded protein levels in cells
Date:3/4/2014

LA JOLLA, CA March 4, 2014 Scientists at The Scripps Research Institute (TSRI) have invented small-molecule folding probes that enable them to quantify functional, normally folded and disease-associated misfolded conformations (shapes) of a protein-of-interest in cells under different conditions.

Scientists have long needed better tools for making such measurements in cells, because protein misfolding is a major cause of damage to tissues. Disorders that feature excessive protein misfolding afflict millions of people worldwide and include Alzheimer's and Parkinson's diseases, the systemic amyloidoses and prion ("mad cow-type") infections, as well as common enzyme deficiencies.

"This new probe technology should lead to a better understanding of how to fold misfolding-prone proteins in cells," said Jeffery W. Kelly, chair of TSRI's Department of Molecular and Experimental Medicine, Lita Annenberg Hazen Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

"The ability to quantify protein folding in a cell using this simple fluorescence-based technology should speed the development of new therapies."

The study, led by Kelly and his laboratory, is reported in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

Profound Consequences

Misfolded proteins have never been easy to distinguish from their normally folded counterparts, especially within cells, because both have the same sequence of amino acids. Yet the loss of the normally folded shape can have profound consequencesa misfolded protein typically will lose its function within a cell. Worse, misfolding may expose "sticky," previously concealed parts of a protein that cause it to start aggregating with other copies of itself, leading to dysfunction of tissue that does not easily regenerate.

Both loss-of-function and gain-of-toxic function mutations can lead to disease, often shortening lifespan. Boosting the folding systems or the capacity of the protein homeostasis network in cells can prevent or eliminate protein misfolding. These new probes allow scientists to quantify how adapting the protein homeostasis network enhances the folding of a particular protein.

In the new study, Kelly's team aimed to selectively tag only the folded and functional conformations of a protein-of-interest. In one case, to demonstrate proof-of-principle, the scientists employed a model protein, retroaldolase, a designed enzyme created by collaborator David Baker's laboratory at the University of Washington, Seattle. The team also used transthyretin (TTR), a protein whose misfolding and aggregation is known to lead to several fatal disorders, including cardiomyopathies and polyneuropathies. (The Kelly laboratory recently helped develop the first specific drug therapy for the TTR polyneuropathies.)

The teamparticularly the three lead authors, graduate students Yu Liu and Yun Lei Tan and Research Associate Xin Zhangaccomplished the tagging reaction by designing and making "folding probes" that covalently labeled the properly folded, functional forms of the proteins, but not the misfolded forms. When the scientists added a solution of probe molecules to the soluble contents of cells containing the target proteins, they were able to quantify the folded target proteins from the light emitted by the probes' fluorescent beacons.

Toward Better Screens for New Drugs

Probes that covalently react with folded and functional protein families have been devised before by the Cravatt lab at TSRI. However, their usefulness as folding probes had been questioned by the scientific community, because the very act of reacting a folding probe with a target folded and functional protein-of-interest stabilizes that state and usually increases the population of the folded and functional fraction, overrepresenting it. In the new study, however, the researchers used folding probes in combination with cell lysis and ATP depletion, which causes the chaperones in the cell to hold onto the unfolded proteomepreventing its folding, providing a snapshot of the folded protein-of-interest population, while minimizing overrepresentation of that state by the tagging process.

One of the most important applications of new probes like these will be for the rapid, "high-throughput" screening of very large drug compound libraries to identify drug candidates that prevent protein misfolding by improving the quality of cellular folding. "Using these probes to quantify the concentration of a functional, folded protein-of-interest, we can screen for compounds that boost this concentration, for example," said Zhang, who along with Kelly conceived and designed the study.

In this study, the researchers cleared another hurdle for the use of probes in high-throughput screens with the design of a probe whose fluorescent beacon isn't lit all the time, but only turns on when it reacts with the folded protein-of-interest. "That fluorescent signal quickly shows you the concentration of the folded, functional protein that was in the cell at the time of lysis," Zhang said. "There is no need for the time-consuming removal of fluorescence probes that aren't bound to targets or separation of the probeprotein-of-interest conjugate."

Drugs that reduce the misfolding of specific proteins by altering cell biology of protein homeostasis might one day be used to prevent or delay age-related neurodegenerative diseases, such as Alzheimer's and Parkinson's, and to treat inherited enzyme-deficiency disorders. Zhang, Kelly and their colleagues suspect that anti-misfolding drugs could have even broader applications, given the surprisingly large populations of misfolded proteins in cells and all the ways in which those misfolded proteins could be causing harm.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert  

Related biology news :

1. Light and nanoprobes detect early signs of infection
2. Mercyhurst University study probes impact of climate change on ectotherms
3. Tiny probes shine brightly to reveal the location of targeted tissues
4. Rice University researchers optimize photoluminescent probes to study DNA and more
5. Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces
6. The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
7. Scripps scientist awarded $1.8 million to develop new approaches to lung cancer therapy
8. Scripps Florida scientists offer new insight into neuron changes brought about by aging
9. Scripps leads first global snapshot of key coral reef fishes
10. Scripps Research Institute scientists achieve most detailed picture ever of key part of hepatitis C
11. Scripps oceanography researchers engineer breakthrough for biofuel production
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New probes from Scripps research quantify folded and misfolded protein levels in cells
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... of Infosys (NYSE: INFY ), and Samsung SDS, ... partnership that will provide end customers with a more ... payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) ... financial services, but it also plays a fundamental part in ...
(Date:4/15/2016)... 2016  A new partnership announced today will ... decisions in a fraction of the time it ... high-value life insurance policies to consumers without requiring ... Force Diagnostics, rapid testing (A1C, Cotinine and HIV) ... pressure, weight, pulse, BMI, and activity data) available ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) is ... treatments and faster cures for prostate cancer. Members of the Class of 2016 ... countries. Read More About the Class of 2016 PCF ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, ... of the Supplyframe Design Lab . Located in Pasadena, Calif., the Design ... of how hardware projects are designed, built and brought to market. , The ...
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
(Date:6/23/2016)... On Wednesday, June 22, 2016, the NASDAQ Composite ... Jones Industrial Average edged 0.27% lower to finish at 17,780.83; ... has initiated coverage on the following equities: Infinity Pharmaceuticals Inc. ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ), ... more about these stocks by accessing their free trade alerts ...
Breaking Biology Technology: