Navigation Links
New palm-sized microarray technique grows 1,200 individual cultures of microbes
Date:6/24/2013

A new palm-sized microarray that holds 1,200 individual cultures of fungi or bacteria could enable faster, more efficient drug discovery, according to a study published in mBio, the online open-access journal of the American Society for Microbiology.

Scientists at the University of Texas at San Antonio and the U.S. Army Institute of Surgical Research at Fort Sam Houston have developed a microarray platform for culturing fungal biofilms, and validated one potential application of the technology to identify new drugs effective against Candida albicans biofilms. The nano-scale platform technology could one day be used for rapid drug discovery for treatment of any number of fungal or bacterial infections, according to the authors, or even as a rapid clinical test to identify antibiotic drugs that will be effective against a particular infection.

"Even though we have used the antifungal concept for development, it is a universal tool," says co-author Jose Lopez-Ribot of the University of Texas at San Antonio. "It opens a lot of possibilities as a new platform for microbial culture. Any time you need large numbers of cultures, this has a big advantage over other methods."

"The possibility exists to use this same technology for pretty much any other organism," he says.

Microbiology and medicine have become increasingly reliant on micro- and nano-scale technologies because of the increased speed and efficiency they can offer, but until now the cultivation of microorganisms has mostly been conducted on larger scales, in flasks and in trays called micro-titer plates. The microarray technology enables the user to rapidly compare hundreds or thousands of individual cultures of bacteria or fungi, a big benefit in the search for new drugs to treat infections. And like many nano-scale techniques, the nano-culture approach described in the mBio study is also automated, a feature that saves time, improves reproducibility, and prevents some types of user error.

To test the technique, the authors embedded cells of the opportunistic pathogen C. albicans in each of the 1,200 tiny dots of alginate on the surface of the microarray. Under the microscope, these nano-biofilms of C. albicans, each of which was only 30 nanoliters, exhibited the same growth habits and other outward characteristics as conventional, macroscopic biofilms, and achieved maximum metabolic activity within 12 hours. The tiny cultures were then treated with a wide range of candidate drugs from the National Cancer Institute library, or with different FDA-approved, off-patent antifungal drugs in combination with FK506, an immunosuppressant, for identifying individual or synergistic combinations of compounds effective against biofilm infections. Co-author Anand Ramasubramanian of the University of Texas at San Antonio says that the tests prove the utility of the technology in screening combinations of drugs.

"The antifungal screening results were similar to results in larger macroscale techniques. That gives us confidence that it could be used as a tool to replace existing techniques," says Ramasubramanian.

Going forward, Ramasubramanian says he and his colleagues are testing the microarrays with polymicrobial cultures - mixtures of fungi and bacteria - to see whether the technology can be used to explore treatments for mixed infections. They are also exploring clinical applications for the technique, testing patient samples against an array of drugs or combinations of drugs to develop tailored therapies.

Lopez-Ribot says their microarray technique is just the latest development in a decades-long trend toward the tiny in science. "Things are moving toward smaller scale, more powerful techniques. You don't need millions of cells for these assays like we used to - maybe a few cells will do."


'/>"/>

Contact: Jim Sliwa
jsliwa@asmusa.org
202-942-9297
American Society for Microbiology
Source:Eurekalert

Related biology news :

1. Markets for PCR, DNA Microarray, DNA Sequencing, Mass Spectrometry and Flow Cytometry to Exceed $50 billion by 2015
2. DNA Microarray 2013 Market Report: A Focus on Sales Growth
3. New synthetic biology technique boosts microbial production of diesel fuel
4. New genetic bar code technique establishes ability to derive DNA information from RNA
5. Early detection techniques offer hope for improved outcomes in lung cancer patients
6. Scientists develop new technique that could improve heart attack prediction
7. New rearing system may aid sterile insect technique against mosquitoes
8. Its a trap! New laboratory technique captures microRNA targets
9. New screening technique yields elusive compounds to block immune-regulating enzyme
10. New stem cell technique promises abundance of key heart cells
11. Evaluation of microscopy techniques may help scientists to better understand ancient plants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
(Date:4/28/2016)... , April 28, 2016 First quarter 2016: ... up 966% compared with the first quarter of 2015 ... SEK 589.1 M (loss: 18.8) and the operating margin was 40% ... 0.32) Cash flow from operations was SEK 249.9 M ... revenue guidance is unchanged, SEK 7,000-8,500 M. The operating ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Global demand for enzymes is forecast ... to $7.2 billion.  This market includes enzymes used ... biofuel production, animal feed, and other markets) and ... Food and beverages will remain the largest market ... of products containing enzymes in developing regions.  These ...
(Date:6/27/2016)... Raleigh, NC (PRWEB) , ... June 27, 2016 ... ... a mission to bring innovative medical technologies, services and solutions to the healthcare ... development and implementation of various distribution, manufacturing, sales and marketing strategies that are ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
Breaking Biology Technology: