Navigation Links
New organic molecule in space

This release is available in German.

The "Large Molecule Heimat" is a very dense, hot gas clump within the star forming region Sagittarius B2. In this source of only 0,3 light-year diameter, which is heated by a deeply embedded newly formed star, most of the interstellar molecules known to date have been found, including the most complex ones such as ethyl alcohol, formaldehyde, formic acid, acetic acid, glycol aldehyde (a basic sugar), and ethylene glycol.

Starting from 1965, more than 140 molecular species have been detected in space, in interstellar clouds as well as in circumstellar envelopes. A large fraction of these molecules is organic or carbon-based. A lot of attention is given to the quest for so-called "bio"-molecules, especially interstellar amino acids. Amino acids, the building blocks of proteins and therefore key ingredients for the origin of life, have been found in meteorites on Earth, but not yet in interstellar space.

The simplest amino acid, glycine (NH2CH2COOH), has long been searched for in the interstellar medium but has so far not been unambiguously detected. Since the search for glycine has turned out to be extremely difficult, a chemically related molecule was searched for, amino acetonitrile (NH2CH2CN), probably a direct precursor of glycine.

The scientists from the Max Planck Institute for Radioastronomy in Bonn selected the "Large Molecule Heimat", as the source has been named by experts, and investigated a dense forest of 3700 spectral lines from complex molecules with the IRAM 30-metre telescope in Spain. Atoms and molecules emit light at very specific frequencies, which appear as characteristic lines in the radiation spectrum. By analyzing these spectral lines, astronomers can determine the chemical composition of cosmic clouds. The more complex a molecule is, the more possibilities it has to radiate its internal energy. This is the reason why complex molecules emit many spectral lines, which are very weak and therefore difficult to identify in the "line jungle".

"Still, we were finally able to assign 51 very weak lines to the molecule amino acetonitrile" says Arnaud Belloche, scientist at the Max Planck institute and first author of the research paper. This result was confirmed at 10 times higher spatial resolution with two radio telescope arrays, the IRAM Plateau de Bure interferometer in France and the Australia Telescope Compact Array. These observations showed that all the candidate lines were emitted from the same position in the "Large Molecule Heimat", "a strong proof of the reliability of our identification".

"Finding amino acetonitrile has greatly extended our insight into the chemistry of dense, hot star-forming regions. I am sure we will be able to identify in the future many new, even more complex organic molecules in the interstellar gas. We already have several candidates!" says Karl Menten, director at the Max Planck Institute for Radioastronomy and head of the "Millimeter and Submillimeter Astronomy" research group.


Contact: Dr. Arnaud Belloche

Related biology news :

1. Are organic crops as productive as conventional?
2. Dissolved organic matter in the water column may influence coral health
3. Uncharged organic molecule can bind negatively charged ions
4. Is it organic or not?
5. Study reveals that nitrogen fertilizers deplete soil organic carbon
6. Surprise in the organic orchard -- a healthier worm in the apple
7. New microsensor measures volatile organic compounds in water and air on-site
8. Stanford researchers make first direct observation of 3-D molecule folding in real time
9. Rice scientists make breakthrough in single-molecule sensing
10. Liquid crystal phases of tiny DNA molecules point up new scenario for first life on Earth
11. New book presents methods to poke and prod individual molecules
Post Your Comments:
Related Image:
New organic molecule in space
(Date:11/17/2015)... , November 17, 2015 Paris ...   --> Paris from 17 th ... DERMALOG, the biometrics innovation leader, has invented the first combined ... on the same scanning surface. Until now two different scanners ... one scanner can capture both on the same surface. ...
(Date:11/12/2015)...  A golden retriever that stayed healthy despite having ... provided a new lead for treating this muscle-wasting disorder, ... of MIT and Harvard and the University of São ... Cell, pinpoints a protective gene that boosts ... The Boston Children,s lab of Lou Kunkel , ...
(Date:11/10/2015)... 10, 2015 About signature ... helps to identify and verify the identity of ... as the secure and accurate method of authentication ... particular individual because each individual,s signature is highly ... when dynamic signature of an individual is compared ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... N.J. (PRWEB) , ... November 24, 2015 , ... The ... the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the ... through his or her work with turfgrass. , Clarke, of Iselin, N.J., ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... But unless it is bound to proteins, copper is also toxic to cells. ... at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper in ...
(Date:11/24/2015)... , November 24, 2015 ... new market research report "Oligonucleotide Synthesis Market by Product ... (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical ... published by MarketsandMarkets, the market is expected to reach ... in 2015, at a CAGR of 10.1% during the ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
Breaking Biology Technology: