Navigation Links
New molecule can tangle up DNA for more than 2 weeks
Date:2/14/2012

AUSTIN, Texas Chemists at The University of Texas at Austin have created a molecule that's so good at tangling itself inside the double helix of a DNA sequence that it can stay there for up to 16 days before the DNA liberates itself, much longer than any other molecule reported.

It's an important step along the path to someday creating drugs that can go after rogue DNA directly. Such drugs would be revolutionary in the treatment of genetic diseases, cancer or retroviruses such as HIV, which incorporate viral DNA directly into the body's DNA.

"If you think of DNA as a spiral staircase," says Brent Iverson, professor of chemistry and chair of the department of chemistry and biochemistry, "imagine sliding something between the steps. That's what our molecule does. It can be visualized as binding to DNA in the same way a snake might climb a ladder. It goes back and forth through the central staircase with sections of it between the steps. Once in, it takes a long time to get loose. Our off-rate under the conditions we used is the slowest we know of by a wide margin."

Iverson says the goal is to be able to directly turn on or off a particular sequence of genes.

"Take HIV, for example," he says. "We want to be able to track it to wherever it is in the chromosome and just sit on it and keep it quiet. Right now we treat HIV at a much later stage with drugs such as the protease inhibitors, but at the end of the day, the HIV DNA is still there. This would be a way to silence that stuff at its source."

Iverson, whose results were published in Nature Chemistry and presented this month at a colloquium at NYU, strongly cautions that there are numerous obstacles to overcome before such treatments could become available.

The hypothetical drug would have to be able to get into cells and hunt down a long and specific DNA sequence in the right region of our genome. It would have to be able to bind to that sequence and stay there long enough to be therapeutically meaningful.

"Those are the big hurdles, but we jumped over two of them," says Iverson. "I'll give presentations in which I begin by asking: Can DNA be a highly specific drug target? When I start, a lot of the scientists in the audience think it's a ridiculous question. By the time I'm done, and I've shown them what we can do, it's not so ridiculous anymore."

In order to synthesize their binding molecule, Iverson and his colleagues begin with the base molecule naphthalenetetracarboxylic diimide (NDI). It's a molecule that Iverson's lab has been studying for more than a decade.

They then piece NDI units together like a chain of tinker toys.

"It's pretty simple for us to make," says Amy Rhoden Smith, a doctoral student in Iverson's lab and co-author on the paper. "We are able to grow the chain of NDIs from special resin beads. We run reactions right on the beads, attach pieces in the proper order and keep growing the molecules until we are ready to cleave them off. It's mostly automated at this point."

Rhoden Smith says that the modular nature of these NDI chains, and the ease of assembly, should help enormously as they work toward developing molecules that bind to longer and more biologically significant DNA sequences.

"The larger molecule is composed of little pieces that bind to short segments of DNA, kind of like the way Legos fit together," she says. "The little pieces can bind different sequences, and we can put them together in different ways. We can put the Legos in a different arrangement. Then we scan for sequences that they'll bind."


'/>"/>
Contact: Daniel Oppenheimer
oppenheimer@austin.utexas.edu
512-745-3353
University of Texas at Austin
Source:Eurekalert  

Related biology news :

1. UH Manoa researchers discover novel chemical route to form organic molecules
2. Simpler times: Did an earlier genetic molecule predate DNA and RNA?
3. New synthetic molecules treat autoimmune disease in mice
4. Twisting molecules by brute force: A top-down approach
5. Researchers awarded $3.2 million from NIH to pioneer advanced biomolecule discovery technology
6. Scripps research scientists develop brand new class of small molecules through innovative chemistry
7. Bacteria responsible for common infections may protect themselves by stealing immune molecules
8. Molecule serves as a key in some protein interactions
9. Study identifies molecules used by certain species of seaweed to harm corals
10. Medical College of Wisconsin researchers show molecule inhibits metastasis
11. Sexual selection by sugar molecule helped determine human origins
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New molecule can tangle up DNA for more than 2 weeks
(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/9/2016)... -- Perkotek an innovation leader in attendance control systems is proud to announce the introduction ... to make sure the right employees are actually signing in, and to even control ... ... ... ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... MONICA, Calif. , June 23, 2016  The Prostate Cancer Foundation ... pioneer increasingly precise treatments and faster cures for prostate cancer. Members of the ... institutions across 15 countries. Read More About the Class ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... announced the launch of the Supplyframe Design Lab . Located in Pasadena, ... explore the future of how hardware projects are designed, built and brought to ...
(Date:6/23/2016)... LOUISVILLE, Ky. , June 23, 2016 /PRNewswire/ ... from two Phase 1 clinical trials of its ... double-blind, placebo-controlled, single and multiple ascending dose studies ... and pharmacodynamics (PD) of subcutaneous injection in healthy ... APL-2 subcutaneously (SC) either as a single dose ...
(Date:6/23/2016)... YORK , June 23, 2016 ... trading session at 4,833.32, down 0.22%; the Dow Jones Industrial ... S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), ... Therapeutics Inc. (NASDAQ: BIND ). Learn more about ...
Breaking Biology Technology: