Navigation Links
New molecule can tangle up DNA for more than 2 weeks
Date:2/14/2012

AUSTIN, Texas Chemists at The University of Texas at Austin have created a molecule that's so good at tangling itself inside the double helix of a DNA sequence that it can stay there for up to 16 days before the DNA liberates itself, much longer than any other molecule reported.

It's an important step along the path to someday creating drugs that can go after rogue DNA directly. Such drugs would be revolutionary in the treatment of genetic diseases, cancer or retroviruses such as HIV, which incorporate viral DNA directly into the body's DNA.

"If you think of DNA as a spiral staircase," says Brent Iverson, professor of chemistry and chair of the department of chemistry and biochemistry, "imagine sliding something between the steps. That's what our molecule does. It can be visualized as binding to DNA in the same way a snake might climb a ladder. It goes back and forth through the central staircase with sections of it between the steps. Once in, it takes a long time to get loose. Our off-rate under the conditions we used is the slowest we know of by a wide margin."

Iverson says the goal is to be able to directly turn on or off a particular sequence of genes.

"Take HIV, for example," he says. "We want to be able to track it to wherever it is in the chromosome and just sit on it and keep it quiet. Right now we treat HIV at a much later stage with drugs such as the protease inhibitors, but at the end of the day, the HIV DNA is still there. This would be a way to silence that stuff at its source."

Iverson, whose results were published in Nature Chemistry and presented this month at a colloquium at NYU, strongly cautions that there are numerous obstacles to overcome before such treatments could become available.

The hypothetical drug would have to be able to get into cells and hunt down a long and specific DNA sequence in the right region of our genome. It would have to be able to bind to that sequence and stay there long enough to be therapeutically meaningful.

"Those are the big hurdles, but we jumped over two of them," says Iverson. "I'll give presentations in which I begin by asking: Can DNA be a highly specific drug target? When I start, a lot of the scientists in the audience think it's a ridiculous question. By the time I'm done, and I've shown them what we can do, it's not so ridiculous anymore."

In order to synthesize their binding molecule, Iverson and his colleagues begin with the base molecule naphthalenetetracarboxylic diimide (NDI). It's a molecule that Iverson's lab has been studying for more than a decade.

They then piece NDI units together like a chain of tinker toys.

"It's pretty simple for us to make," says Amy Rhoden Smith, a doctoral student in Iverson's lab and co-author on the paper. "We are able to grow the chain of NDIs from special resin beads. We run reactions right on the beads, attach pieces in the proper order and keep growing the molecules until we are ready to cleave them off. It's mostly automated at this point."

Rhoden Smith says that the modular nature of these NDI chains, and the ease of assembly, should help enormously as they work toward developing molecules that bind to longer and more biologically significant DNA sequences.

"The larger molecule is composed of little pieces that bind to short segments of DNA, kind of like the way Legos fit together," she says. "The little pieces can bind different sequences, and we can put them together in different ways. We can put the Legos in a different arrangement. Then we scan for sequences that they'll bind."


'/>"/>
Contact: Daniel Oppenheimer
oppenheimer@austin.utexas.edu
512-745-3353
University of Texas at Austin
Source:Eurekalert  

Related biology news :

1. UH Manoa researchers discover novel chemical route to form organic molecules
2. Simpler times: Did an earlier genetic molecule predate DNA and RNA?
3. New synthetic molecules treat autoimmune disease in mice
4. Twisting molecules by brute force: A top-down approach
5. Researchers awarded $3.2 million from NIH to pioneer advanced biomolecule discovery technology
6. Scripps research scientists develop brand new class of small molecules through innovative chemistry
7. Bacteria responsible for common infections may protect themselves by stealing immune molecules
8. Molecule serves as a key in some protein interactions
9. Study identifies molecules used by certain species of seaweed to harm corals
10. Medical College of Wisconsin researchers show molecule inhibits metastasis
11. Sexual selection by sugar molecule helped determine human origins
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New molecule can tangle up DNA for more than 2 weeks
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
(Date:3/28/2017)... 2017 The report "Video Surveillance ... Servers, Storage Devices), Software (Video Analytics, VMS), and Service ... Forecast to 2022", published by MarketsandMarkets, the market was ... projected to reach USD 75.64 Billion by 2022, at ... base year considered for the study is 2016 and ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed Anwar ... the prestigious international IAIR Award for the most innovative high security ePassport ... ... Maldives Immigration Controller General, Mr. ... on the right) have received the IAIR award for the "Most innovative ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... During the course of ... testing for 1,25-Dihydroxyvitamin D can enhance clinical practice. Participants will learn the medical ... D. , Dr. Gregory Plotnikoff, senior consultant with Minnesota Personalized Medicine, will be ...
(Date:4/27/2017)... April 27, 2017  Pendant Biosciences, Inc. (formerly Nanoferix, ... modification and drug delivery technologies, today announced that it ... @ Toronto . ... Pendant Biosciences, noted, "We are excited to become part ... community, and are honored to be the first ...
(Date:4/26/2017)... ... April 25, 2017 , ... LABS, Inc. (LABS) announced in December 2016 ... extensive test menu: Nucleic Acid Testing (NAT) for ZIKV; and Enzyme Immunoassays (EIAs) specific ... offer NAT screening for blood donors under an Investigational New Drug (IND) study protocol. ...
(Date:4/25/2017)... ... April 25, 2017 , ... As part of the ... explore the laboratory testing for DIC in order to illuminate this clinical problem for ... occur in hospitalized patients resulting in a high degree of morbidity and mortality. DIC ...
Breaking Biology Technology: