Navigation Links
New model shows importance of feet, toes in body balance
Date:3/10/2011

COLUMBUS, Ohio Researchers are using a new model to learn more about how toe strength can determine how far people can lean while keeping their balance.

The results could help in building robotic body parts that will closely imitate human movement, and might lead to a new generation of advanced prosthetics.

Hooshang Hemami, professor of electrical and computer engineering at Ohio State University built a complex computational model of the human foot to look at the role of the feet and toes in determining the body's movement and balance.

Many studies concerning human balance have emphasized the legs and upper body while ignoring the feet, he said.

Hemami is one of a handful of researchers who are analyzing how manipulating toe strength can affect human balance.

"In order to reduce the complexity of the problem, the feet are often either neglected or modeled using simple shapes that don't really give full credit to the importance of feet," Hemami continued.

Hemami and a colleague, Laura Humphrey, designed a computer model of a body and foot which assigned four different sections to represent different parts of the foot, while assigning the body one section. This allowed Hemami and Humphrey to focus primarily on the pressure of the feet and toes as they manipulated the forward motion of the body.

Hemami and Humphrey's work was published in a recent issue of the Journal of Biomechanics. The researchers performed simulations of static balance and forward leaning in the computer-modeled body, and compared the results to those observed in the scientific literature.

Static balance is when a subject stands either straight or at a certain angle, and is able to remain stabilized in that position with the entire surface area of the bottom of the foot on the ground. The computer model can perform forward leaning indefinitely, but human subjects will experience muscle fatigue eventually, explained Hemami.

The model that Hemami and Humphrey built allowed them to produce results that supported the findings of balance shown in real subjects. They conducted tests for three different cases: static balance in healthy subjects, static balance in subjects with diminished toe strength, and forward leaning in healthy subjects.

In order to have the model mimic a subject with diminished toe strength, Hemami and Humphrey weakened one of the sections in the computer-modeled foot, which represented a muscle located just above the big toe. This muscle helps control the foot's arch, which provides support to the body while standing.

Results indicated that in a healthy person, toes became increasingly important as the person leans forward.

As the computer-modeled body leaned forward, the pressure underneath the toes increased significantly, and the pressure underneath the heel decreased in a similar fashion.

When the same tests of static balance were performed on the computer-modeled body with diminished toe strength, the pressure underneath the toes remained at zero. Initially, the pressure underneath the heel was significantly higher than in the healthy subject, and as the body leaned forward, the pressure underneath the heel only decreased by half the amount that it did in the healthy subject.

The maximum angle that a healthy computer-modeled body could lean forward from the waist without its heels lifting off the ground was nearly 12 degrees from vertical. The model with diminished toe strength could only lean forward nearly 10 degrees.

The computer model supports past studies on real people, Hemami explained. One discrepancy: his computer model was able to lean forward 12 degrees without lifting its heels, while real people were only able to lean two-thirds as much -- 8 degrees.

"This discrepancy could be psychological that people do not feel comfortable using their maximum theoretical range of motion," said Hemami.

Hemami's colleague Laura Humphrey was one of his doctoral students, and she has since graduated from Ohio State.

"Now that we have a reasonable computer model, we hope to explore, in the future, the sensory apparatus and other functions of the toes in diverse human activities," Hemami said.

He will be collaborating with Ian Alexander, professor of orthopaedics at Ohio State, in the near future.

In the future, Hemami wants to model the human spinal cord and develop a mathematical system that can determine the level of reaching and pushing required for certain tasks. Hemami uses the example of how much pressure one should administer to hold an egg in your hands without dropping or crushing it.

"My hope is that my work will inspire construction of robotic models of various body parts that can move similarly to the human body. If you can make a robot or computer model kick a soccer ball like a soccer player, we will have a better understanding of how various parts of the body work during movement. Then, perhaps, you can build an artificial spinal cord that could help the handicapped," Hemami said. "Attaching a robotic spinal cord to the outside of someone who is handicapped could help muscle development."

"We try to model what muscles do, which may help to develop more advanced prosthetics, so we have something better to offer people who need them," Hemami explained.


'/>"/>

Contact: Hooshang Hemami
Hemami.1@osu.edu
614-292-2848
Ohio State University
Source:Eurekalert

Related biology news :

1. Penn biophysicists create new model for protein-cholesterol interactions in brain and muscle tissue
2. Models of eel cells suggest electrifying possibilities
3. Anti-cancer drug prevents, reverses cardiovascular damage in mouse model of premature aging disorder
4. Swamping bad cells with good in ALS animal models helps sustain breathing
5. Moderate use averts failure of type 2 diabetes drugs in animal model
6. Multiple sclerosis research charges ahead with new mouse model of disease
7. A model to measure soil health in the era of bioenergy
8. New model predicts hot spots for mercury in fish
9. New movement models tested at the Smithsonian in Panama
10. Cytori reports benefit of adipose-derived regenerative cells in spinal disc model
11. Lifecycles of tropical cyclones predicted in global computer model
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/24/2017)... , April 24, 2017 ... and partner with  Identity Strategy Partners, LLP (IdSP) ... "With or without President Trump,s March 6, 2017 ... Terrorist Entry , refugee vetting can be instilled with ... resettlement. (Right now, all refugee applications are suspended ...
(Date:4/13/2017)... 2017 UBM,s Advanced Design and Manufacturing event ... emerging and evolving technology through its 3D Printing and ... alongside the expo portion of the event and feature ... focused on trending topics within 3D printing and smart ... event will take place June 13-15, 2017 at the Jacob ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Parks Associates announced today that Tom Kerber , Director ... , October 11 in Scottsdale, Arizona . Kerber will ... safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the introduction of ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... and business process optimization firm for the life sciences and healthcare industries, announces ... conference in San Francisco. , The presentation, “Automating GxP Validation for Agile Cloud ...
(Date:10/9/2017)...  BioTech Holdings announced today identification and patenting ... stem cell therapy prevents limb loss in animal ... that treatment with ProCell resulted in more than ... to standard bone marrow stem cell administration.  Interestingly, ... of therapeutic effect.  ...
(Date:10/9/2017)... ... ... At its national board meeting in North Carolina, ARCS® Foundation President ... and Astronomy, has been selected for membership in ARCS Alumni Hall of Fame ... Prize in Fundamental physics for the discovery of the accelerating expansion of the universe, ...
Breaking Biology Technology: